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The Borsuk - Ulam theorem (Borsuk, 1933). Four equivalent
statements:
(a) For every continuous mapping f : Sn → Rn there exists a point
x ∈ Sn with f (x) = f (−x).
(b) For every antipodal (i.e. f (−x) = −f (x)) continuous mapping
f : Sn → Rn there exists a point x ∈ Sn with f (x) = 0.
(c) There is no antipodal continuous mapping f : Sn → Sn−1.
(d) There is no continuous mapping f : Bn → Sn−1 that is
antipodal on the boundary.
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The Lyusternuk-Shnirelman theorem

Lyusternik and Shnirelman proved in 1930 that for any cover
F1, . . . ,Fn+1 of the sphere Sn by n + 1 closed sets, there is at least
one set containing a pair of antipodal points (that is,
Fi ∩ (−Fi ) 6= ∅). Equivalently, for any cover U1, . . . ,Un+1 of Sn by
n + 1 open sets, there is at least one set containing a pair of
antipodal points.
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Tucker’s lemma

Theorem (Tucker, 1945)

Let Λ be a triangulation of the ball Bd that is antipodally
symmetric on the boundary. Let

L : V (Λ)→ {+1,−1,+2,−2, . . . ,+d ,−d}

be a labelling of the vertices of Λ that satisfies L(−v) = −L(v) for
every vertex v on the boundary Bd . Then there exists an edge in Λ
that is “complementary”: i.e., its two vertices are labelled by
opposite numbers.
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Tucker’s lemma for spheres

Theorem

Let Λ be an antipodal triangulation of Sd . Let

L : V (Λ)→ {+1,−1,+2,−2, . . . ,+d ,−d}

be an antipodal labelling of the vertices of Λ that satisfies
L(−v) = −L(v) for all vertices. Then Λ contains a complimentary
edge.
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Fan’s lemma

Theorem (Ky Fan, 1952)

Let Λ be an antipodal triangulation of Sd . Suppose that each
vertex v of Λ is assigned a label L(v) from {±1,±2, . . . ,±n} in
such a way that L(−v) = −L(v). Suppose this labelling does not
have complementary edges. Then there are an odd number of
d-simplices of Λ whose labels are of the form
{k0,−k1, k2, . . . , (−1)dkd}, where 1 ≤ k0 < k1 < . . . < kd ≤ n. In
particular, n ≥ d + 1.
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P. Bacon, 1966

Theorem

Let X be a normal topological space with a free continuous
involution A : X → X . Then the following statements are
equivalent:

1 (X ,A) is a BUT–space, i. e., for any continuous mapping
f : X → Rn there is x ∈ X such that f (A(x) = f (x).

2 (X ,A) is a LSn–space, i. e. for any cover C1, . . . ,Cn+1 of X
by n + 1 closed (respectively, by n + 1 open) sets, there is at
least one set containing a pair (x ,A(x)).

3 (X ,A) is a Tn–space (Tucker space), i. e. for any covering of
X by a family of 2n closed (respectively, of 2n open) sets
{C1,C−1, . . . ,Cn,C−n}, where C−i = A(Ci ), for all i , there is
k such that Ck and C−k have a common intersection point.
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P. Bacon, 1966

4. (X ,A) is a TBn–space (Tucker–Bacon space), i. e., if each of
C1,C2, . . . ,Cn+2 is a closed subset of X ,

n+2⋃
i=1

Ci = X ,
n+2⋃
i=1

(Ci ∩ A(Ci )) = ∅,

then for any j there is a point p in X such that

p ∈
j⋂

i=1

Ci and A(p) ∈
n+2⋂
i=j+1

Ci .

5. (X ,A) is an Yn–space (Yang space). Yn can be define
recursively: Y0 contains all (X ,A), (X ,A) ∈ Yn if a closed
subset F in X is such that F ∪A(F ) = X , then F ∩A(F ) is an
Yn−1–space.



The Borsuk-Ulam theorem

The Borsuk-Ulam theorem

One of the most interesting proofs of this theorem is Bárány’s
geometric proof:

I. Bárány, Borsuk’s theorem through complementary pivoting,
Math. Programing, 18 (1980), 84-88.

J. Matoušek, Using the Borsuk-Ulam theorem, Springer-Verlag,
Berlin, 2003.
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Bárány’s proof

Let X = Sn × [0, 1], X0 = Sn × {0}, and X1 = Sn × {1}. Let
τ(x , t) = (−x , t), where (x , t) ∈ X , x ∈ Sn, and t ∈ [0, 1]. Clearly,
τ is a free involution on X .

The first step of Bárány’s proof is to show that any continuous
antipodal (i.e. F (τ(x)) = −F (x)) map F : X → Rn can be
approximated by “sufficiently generic” antipodal maps.
Let fi : Sn → Rn, where i = 0, 1, be antipodal generic maps. Let

F (x , t) = tf1(x) + (1− t)f0(x).
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Bárány’s proof

Since F is generic, the set ZF := F−1(0) is a manifold of dimension
one. Then ZF consists of arcs {γk} with ends in
Zfi := ZF

⋂
Xi = f −1

i (0) and cycles which do not intersect Xi .
Note that τ(ZF ) = ZF and τ(γi ) = γj with i 6= j . Therefore,
(ZF ,Zf0 ,Zf1) is a Z2-cobordism. It is not hard to see that Zf0 is
Z2-cobordant to Zf1 if and only if |Zf1 | = |Zf0 | = 4k + 2 for some
integer k .
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Bárány’s proof

To complete the proof, take f0 as the standard orthogonal
projection of Sn onto Rn:

f0(x1, . . . , xn, xn+1) = (x1, . . . , xn), where x2
1 + . . .+ x2

n+1 = 1.

Since |Zf0 | = 2, we have |Zf1 | = 4k + 2 for some integer k . This
equality shows that for any antipodal generic f1 the set
Zf1 = f −1

1 (0) is not empty.
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Borsuk-Ulam theorem for the double torus

T (x)

x

Figure: The double torus that is centrally symmetric embedded to R3.
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Borsuk-Ulam theorem for the double torus

Theorem

Let M2
2 denote the double torus that is centrally symmetric

embedded to R3. Let T (x) := −x , x ∈ M2
2 .

(a) For every continuous mapping f : M2
2 → R2 there exists a point

x ∈ M2
2 with f (x) = f (T (x)).

(b) For every antipodal (i.e. g(T (x)) = −g(x)) continuous
mapping g : M2

2 → R2 there exists a point x ∈ M2
2 with g(x) = 0.
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Z2-maps

Let us consider a closed smooth manifold M with a free smooth
involution T : M → M, i.e. T 2(x) = x and T (x) 6= x for all
x ∈ M. For any Z2-manifold (M,T ) we say that a map
f : Mm → Rn is antipodal (or equivariant) if f (T (x)) = −f (x).

We say that a closed Z2-manifold (M,T ) is a BUT (Borsuk-Ulam
Type) manifold if for any continuous map F : Mn → Rn there is a
point x ∈ M such that

F (T (x)) = F (x).

In other words, if a continuous map f : Mn → Rn is antipodal,
then the set Zf := f −1(0) is not empty.
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BUT manifolds

Theorem (M., 2012)

Let Mn be a closed connected manifold with a free involution T .
Then the following statements are equivalent:

(a) For any antipodal continuous map f : Mn → Rn the set Zf is
not empty.

(b) M admits an antipodal continuous transversal map
h : Mn → Rn with |Zh| = 4k + 2, k ∈ Z.

(c) For any equivariant triangulation Λ of M and for any Tucker’s
labeling of V (Λ) there is a complementary edge.

(d) [Mn,T ] = [Sn,A] + [V 1][Sn−1,A] + . . .+ [V n][S0,A] in
Nn(Z2).
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Z2-cobordisms.

We write Nn for the group of unoriented cobordism classes of
n-dimensional manifolds. Thom’s cobordism theorem says that the
graded ring of cobordism classes N∗ is Z2[x2, x4, x5, x6, . . .] with
one generator xk in each degree k not of the form 2i − 1. Note
that x2k = [RP2k ].
Let N∗(Z2) denote the unoriented cobordism group of free
involutions. Then N∗(Z2) is a free N∗-module with basis [Sn,A],
n ≥ 0, where [Sn,A] is the cobordism class of the antipodal
involution on the n-sphere. Thus, each Z2-manifold (M,T ) in
Nn(Z2) can be uniquely represented in the form:

[M,T ] =
n∑

k=0

[V k ][Sn−k ,A].
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Shashkin lemma (1996)

Theorem

Let Θ be a triangulation of a planar polygon that antipodally
symmetric on the boundary. Let

L : V (Θ)→ {+1,−1,+2,−2,+3,−3}

be a labelling of the vertices of Θ that satisfies L(−v) = −L(v) for
every vertex v on the boundary. Suppose that this labelling does
not have complementary edges. Then for any numbers a, b, c ,
where |a| = 1, |b| = 2, |c | = 3, the total number of triangles in Θ
with labels (a, b, c) and (−a,−b,−c) is odd.
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Shashkin lemma for BUT–manifolds

Πd+1 := {+1,−1,+2,−2, . . . ,+(d + 1),−(d + 1)}

Theorem (M., 2016)

Let (M,T ) be a d-dimensional BUT–manifold. Let Θ be an
antipodally symmetric triangulation of M. Let L : V (Θ)→ Πd+1
be an antipodal labelling of Θ. Suppose that this labelling does not
have complementary edges. Then for any set of labels
Λ := {`1, `2, . . . , `d+1} ⊂ Πd+1 with |`i | = i for all i , the number
of d–simplices in Θ that are labelled by Λ is odd.
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Topological index

Consider a group G as a discrete free G -space. Let
Jm(G ) = G ∗ · · · ∗ G be the join of m-copies of G with the
diagonal action of G .

Let X be a free G -space. Topological index t-indG X equals
minimal n such that there exists an equivariant map X → Jn+1(G ).
If no such n exists, then t-indG X =∞.

If G = Z2 then Jm+1(Z2) is equivariantly homeomorphic to Sm,
since SY = Y ∗ Z2, where SY is the suspension, and

Sm = SSm−1 = Sm−1 ∗ Z2 = Sm−2 ∗ Z2 ∗ Z2 = · · · = Jm+1(Z2).
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Tucker type lemmas for G -spaces

Let X be a G–simplicial complex, where G is a finite group. An
equivariant (G , n)-labeling (coloring) of X is an equivariant map
V (X )→ C := G × {1, . . . , n}, where G acts on the first factor by
left multiplication and on the second factor the action is trivial.

An edge in X is called complementary if labels of its vertices belong
to the same orbit in C . For (G , n)-labeling it means that vertices of
a complementary edge have the form (g1, k) and (g2, k), g1 6= g2,
for some k ∈ {1, . . . , n}.

Theorem (M. and A. Volovikov)

t-indG X ≥ d if and only if for any equivariant (G , d)-labeling of
the vertex set of an arbitrary equivariant triangulation of X there
exists a complementary edge.
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Cohomological index

Let X be a free G -space. We define indG X , the integer
cohomological index of X , as its Schwarz’s homological genus
minus 1.

We say that h : X0 → X is n-cohomological trivial (n-c.t. map)
over R if h∗ : Hn(X ;R)→ Hn(X0;R) is the trivial homomorphism
of cohomology groups with coefficients in R in dimension n. In the
case when h is an embedding we call X0 an n-c.t.-subspace of X
over R .
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Tucker type lemmas for bounded spaces

Theorem (M. and A. Volovikov)

Assume that indG X = n − 1 and that X0 is an
(n − 1)-c.t.-subspace of X over Z. Then for any (G , n)-labeling of
the vertex set of an arbitrary triangulation of X which is equivariant
on X0 there exists a complementary edge.

As a partial case we obtain:

Theorem (M. and A. Volovikov)

Let Mn be a compact PL manifold with boundary. Suppose that
∂M is homeomorphic to the sphere Sn−1 and there exists a free PL
action of a group G on ∂M ≈ Sn−1. Then for any (G , n)-labeling
of the vertex set of an arbitrary triangulation of M that is an
equivariant on the boundary there exists a complementary edge.
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Knot Theory

A. V. Malyutin, On the question of genericity of hyperbolic knots,
Int. Math. Res. Not. (2018)

We say that two arcs of a knot diagram D are neighboring if they
are contained in the boundary of the same region.
Denote by ρ(I , J) the minimal number of consecutive arcs between
I and J.

Lemma

Any regular knot projection with n > 0 double points has a pair of
neighboring arcs I and J with ρ(I , J) ≥ 2n/3.
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Knot Theory

f (S1)

J

I

K

2n = 10
ρ(I , J) = 5
ρ(I ,K ) = 2
ρ(J,K ) = 3

Lemma

Any regular knot projection with n > 0 double points has a pair of
neighboring arcs I and J with ρ(I , J) ≥ 2n/3.

The lemma can be proved via the Sperner Lemma or KKM
(Knaster–Kuratowski–Mazurkiewicz) Lemma.
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f –neighbors

Let f : Sm → Rn be a smooth map. We say that two points a
and b in Sm are topological f –neighbors if f (a) and f (b) can be
connected by a continuous path in Rn, whose interior does not
meet f (Sm). Let a and b be topological f –neighbors in Sm.

1 if m = n then f (a) = f (b),
2 if m = 1, n = 2 then f (a) and f (b) belong to the boundary of

the same connected component of R2 \ f (S1),
3 if n ≥ m + 2 then (a, b) can be any pair of points in Sm.

We say that a and b in Sm are visual f –neighbors if the interior of
the line segment in Rn with endpoints at f (a) and f (b) does not
intersect f (Sm).
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Spherical f –neighbors

Let f : X → Y be a continuous map. Points {pi} are f –neighbors
if there exists a sphere SR of radius R in Y such that {f (pi )} lie
on SR and there are no points of f (X ) inside of SR .

f (p2)

f (p1)

f (p3)
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f –neighbors Theorem 1

Theorem

Let Sm be a unit sphere in Rm+1 and let f : Sm → Rn be a
continuous map. Then there are points p and q in Sm such that

‖p − q‖ ≥
√

2 · m+2
m+1 ;

f (p) and f (q) lie on the boundary ∂B of a closed metric
ball B ⊂ Rn whose interior does not meet f (Sm). In other
words, p and q are (spherical) f –neighbors.
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f –neighbors Theorem 2

Theorem (is equivalent to the BUT) Let Sm be a unit sphere
in Rm+1 and let f : Sm → Rm be a continuous map. Then each
point inside of Sm is contained in a straight line segment [a, b] with
f (a) = f (b).

Theorem (2)

Let Sm be a unit sphere in Rm+1 and let f : Sm → Rn be a
continuous map. Then each point inside of Sm is contained in the
convex hull of a family of spherical f –neighbors.

Theorem 1 follows from Theorem 2 by the Jung theorem.
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f –neighbors Theorem 3

Theorem (3)

Let Q be a compact subset in Rm, let ∂Q be the boundary of Q,
and let f : ∂Q → Rn be a continuous map. Then every point of Q
is contained in the convex hull of a family of spherical f –neighbors.
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Delaunay maps

Let K be an abstract simplicial complex and let f : K → Rm be a
map. We say that f is a Delaunay map if f (∆) is a simplex of
DT (f (K )) for each simplex ∆ of K .

In other words, f is Delaunay if it is a simplicial map from |K | to
the Delaunay triangulation of f (K ).
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f –neighbors theorem for Delaunay maps

Theorem

Let V be the set of vertices of a (not necessarily convex) simplicial
n-polytope M in Rn, and let f : V → Rm be a Delaunay map.
Then for each point p ∈ M there exist a collection Z ⊂ V of
f –neighbors such that the convex hull of Z contains p.

The theorem follows from the empty sphere property of Delaunay
triangulations plus the Quillen’s fiber lemma (or, alternatively, one
can use Smale’s homotopy version of Vietoris–Begle mapping
theorem).
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Delaunay approximation

Theorem

For any continuous map f of a compact simplicial space to Rm and
for any ε > 0, there exists an ε-approximation of f by a Delaunay
map.

Delaunay approximation theorem + f –neighbors theorem for
Delaunay maps ⇒ Theorem 3 ⇒ Theorem 2 ⇒ Theorem 1
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non–null–homotopic covers

U = {U1, . . . ,Un} — an open cover of a normal topological space X
Φ = {ϕ1, . . . , ϕn} — a partition of unity subordinate to U
v1, . . . , vn — the vertices of ∆n−1

Set hU ,Φ(x) :=
n∑

i=1
ϕi (x)vi

Suppose
⋂n

i=1 Ui = ∅. Then hU ,Φ is a continuous map X → Sn−2.
The homotopy class [hU ,Φ] in [X ,S n−2] does not depend on Φ.
We denote this class in [X ,Sn−2] by [U ].
We say that an open cover U = {U1, . . . ,Un} of X is
non–null–homotopic if the intersection

⋂n
i=1 Ui is empty and

[U ] 6= 0 in [X ,S n−2].
The homotopy classes of covers are also well defined for closed sets.
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Covering neighboring points theorem

Theorem

Let X be a normal topological space and M be a contractible
metric space. Let C := {C1, . . . ,Cm} be a non–null–homotopic
closed cover of X . Then for every continuous map f : X → M there
exist (not necessarily distinct) points p1, . . . , pm with pi ∈ Ci for
all i = 1, . . . ,m such that they are f –neighbors.
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Corollary (cf. Theorem 1)

Let Sm be a unit sphere in Rm+1 and let f : Sm → M be a
continuous map to a contractible metric space M. Then there are
spherical f –neighbors p and q in Sm with

‖p − q‖ ≥
√

m + 2
m

.

Rn → contractible metric space√
2 · m+2

m+1 →
√

m+2
m
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Thank you


