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Rough dynamical systems

Concept roughness of a dynamical system was born in Nizhny
Novgorod in 1937 (then Gorky). A. Andronov and L. Pontryagin

considered a dynamical system

ẋ = v(x),

where v is a C1-vector field on the plane, x ∈ R2 and suggest to
call it rough if for any sufficiently small perturbation in the
C1-metric, there exists a homeomorphism close to the identity
map which transforms the orbits of the original dynamical
system to the orbits of the perturbed system (perturbed system
is topologically equivalent to original one by a conjugating
homeomorphism).



Criteria of the roughness

In the paper “A. Andronov and L. Pontryagin. Rough systems.
Doklady Akademii Nauk SSSR. 1937. 14 (5): 247–250” for a
dynamical system

ẋ = v(x),

where v is a C1-vector field given on the unit disk and
transversal to the boundary, was done following criteria for its
roughness:
• number of the equilibrium points and periodic orbits is finite

and they are hyperbolic ;
• there are no saddle connections .



Leontovich-Mayer scheme

The topological classification (division into classes with respect
to the topological equivalence) of structurally stable flows
(dynamical systems with continuous time) on a bounded part of
the plane and on the 2-sphere follows from the results by

E. Leontovich-Andronova and A. Mayer . In the papers “E. Leontovich, A.
Mayer. On trajectories defining qualitative structure of
decomposition of the sphere into trajectories. Dokl. Akad. Nauk
SSSR. 1937. 14 (5), 251–257” and “E. Leontovich, A. Mayer.
On a scheme defining topological structure of decomposition
into trajectories. Dokl. Akad. Nauk SSSR. 1955. 103 (4),
557–560” actually more general class of dynamical systems
was considered. The classification was based on the ideas of
Poincare-Bendixson to pick a set of specially chosen
trajectories so that their relative position (Leontovich-Mayer
scheme) fully define the qualitative structure of the
decomposition of the phase space of the dynamical system into
the trajectories.



Transition to a surface with positive genus

The principal difficulty in generalization of this result in case of
arbitrary orientable surfaces of positive genus is the possibility
of new types of motion — non-closed recurrent trajectories . The absence of
such trajectories for structurally stable flows without
singularities on the 2-torus at first was proved by A. Mayer .
Actually in the paper “Mayer A.G. Rough transformation of the
circle to the circle. Uch. Zap. GGU. 1939. Gorky, Pub. GGU,
12, 215-229.” he introduced the rough notion for cascades
(discrete dynamical systems), found the conditions of the
roughness for cascades on the circle and also got the
topological classification for these cascades.



Rough transformations of circle

Let R(S1) be class of rough transformations of the circle which
consists of two subclasses R+(S1) and R−(S1) of preserving
orientation and reverse orientation diffeomorphisms,
accordingly.
1. For each diffeomorphism ϕ ∈ R+(S1) the non-wandering set
NW(ϕ) consists of 2n, n ∈ N periodic orbits, each of them has
period k.
2. For each diffeomorphism ϕ ∈ R−(S1) the non-wandering set
NW(ϕ) consists of 2q, q ∈ N periodic points, two of them are
fixed, others have period 2.



The preserving orientation case

Let ϕ ∈ R+(S1). Enumerate the periodic points from NW(ϕ):
p0, p1, . . . , p2nk−1, p2nk = p0 starting from arbitrary periodic point
p0 clockwise, then ϕ(p0) = p2nl and (k, l) are coprime.

Two diffeomorphisms
ϕ;ϕ′ ∈ R+(S1) with
parameters n, k, l; n′, k′, l′ are
topologically conjugated if and
only if n = n′, k = k′ and at
least one of the following
assertions holds:
• l = l′,
• l = k′ − l′.



The reversing orientation case

For ϕ ∈ R−(S1) we set ν = −1; ν = 0; ν = +1 if its fixed point
are sources; sink and source; sinks, accordingly. Notice that
ν = 0 if q is odd and ν = ±1 if q is even.

Two diffeomorphisms
ϕ;ϕ′ ∈ R−(S1) with
parameters q, ν; q′, ν ′ are
topologically conjugated if and
only if q = q′ and ν = ν ′.



Structural stability

In 1959 M. Peixoto introduced the concept of structural stability of
flows to generalize the concept of roughness.
A flow f t is called structurally stable if, for any sufficiently close
flow gt, there exists a homeomorphism h sending trajectories of
the system gt to trajectories of the system f t. The original
definition of a rough flow involved the additional requirement
that the homeomorphism h be C0-close to the identity map.
Peixoto proved that the concepts of roughness and structural
stability for flows on 2-sphere are equivalent. In 1962 Peixoto
proved that the conditions 1),2) above plus condition
3) all ω- and α-limit sets are contained in the union of the
equilibrium points and the limit cycles
are necessary and sufficient for the structural stability of a flow
on arbitrary orientable closed (compact and without boundary)
surface and showed that such flows are dense in the space of
all C1-flows.



Morse-Smale systems

An immediate generalization of properties of rough flows on
orientable surfaces leads to Morse-Smale systems (continuous
and discrete). The non-wandering set of such a system
consists of finitely many fixed points and periodic orbits, each of
which is hyperbolic and the stable and unstable manifolds Ws

p
and Wu

q intersect transversally for any distinct non-wandering
points p, q.
Morse-Smale systems are named in 1960 after paper “Morse
inequality for Dynamical Systems” Bull. Amer. Math. Soc.
1960, No. 66, 46-49” by S. Smale , where he introduced flows with
the above properties (on manifolds of dimension greater than 2)
and proved that they satisfy inequalities similar to the Morse
inequalities.



Citation

“We remark that systems satisfying 1)-3) may be very important
because of the following possibilities.
(A) It seems at least plausible that system satisfying 1)-3) form
an open dense set in the space (with the C1-topology) of all
vector fields on Mn.
(B) It seems likely that conditions 1)-3) are necessary and
sufficient for X to be structurally stable in the sense of A.
Andronov and L. Pontryagin (1937).
(A) and (B) have been provide for the case Mn is a 2-disk.”

S. Smale



Morse-Smale systems do not exhaust the class of all rough
systems

Later 1969 S. Smale and J. Palis showed that Morse-Smale
systems are structurally stable. However, already in 1961
Smale proved that such systems do not exhaust the class of all
rough systems via constructing a structurally stable
diffeomorphism on the two-dimensional sphere S2 with infinitely
many periodic points. This diffeomorphism is known now as the
Smale’s horseshoe.



Peixoto’s graph

In 1971 M. Peixoto generalized the Leontovich-Mayer’s scheme for
Morse-Smale flow on arbitrary surface as the directed graph
whose vertices are in a one-to-one correspondence with fixed
points and closed trajectories of the flow, and whose edges
correspond to the connected components of the invariant
manifolds of fixed points and closed trajectories. He proved that
the isomorphism class of such directed graph is the complete
topological invariant for the class of Morse-Smale systems on
surfaces (where the isomorphisms preserve specially chosen
subgraphs).



Oshemkov-Sharko approach

A. Oshemkov and V. Sharko in 1998 pointed out a certain inaccuracy
concerning the Peixoto invariant due to the fact that an
isomorphism of graphs does not distinguish between types of
decompositions into trajectories for a domain bounded by two
periodic orbits.



Three-colour graph

A. Oshemkov and V. Sharko suggest to use a three-colour graph.



The graphs



Gradient-like difeomorphisms

Morse-Smale diffeomorphisms is called gradient-like if it has no
heteroclinic points.

Figure: Heteroclinic points

Ch. Bonatti and R. Langevin in 1998 presented topological
classification of arbitrary structurally stable diffeomorphisms of
orientable surfaces using Markov partitions as complete
invariant.



On topological conjugacy

Let f t : Mn → Mn (f : Mn → Mn) be a flow or gradient-like
diffeomorphism.
Is a graph (like to directed or three-colour) complete topological
invariant?
• It is true for flows and n = 2 ( A. Andronov , E. Leontovich-Andronova ,

A. Mayer (1937,1955) for sphere, M. Peixoto , 1971-1973 for any
surfaces).
• It is true for diffeomorphisms and n = 2 ( A. Bezdenezhnych ,

V. Grines 1985 V. Grines , S. Zinina , O. Pochinka 2014).
• It is true for flows and n = 3 ( G. Fleitas 1975, Ya. Umanskii 1990).
• It is true for flows and diffeomorphisms on n-sphere, n > 3

withou heteroclinic intersection ( S. Pilyugin 1978 for flows,
V. Grines , E. Gurevich , V. Medvedev , O. Pochinka 2008–2015 for

diffeomorphisms).



Combinatorial invariants

For wide class of Morse-Smale systems a graph is complete
invariant (similar to Leontovich-Andronova and Mayer’s scheme
or Peixoto’s graph for flows). Topological classification of even
the simplest examples of Morse-Smale diffeomorphisms on
3-manifolds do not fit into the concept of selecting of the frame
of the invariant manifolds of fixed points and periodic orbits.
The reason for this surprising effect is the possibility of “wild”
behavior of the separatrices of the saddle points. First
diffeomorphism with wild separatrices was constructed by

D. Pixton in 1977.



Classification of the Pixton’s class P

Let f ∈ P. Set Vf = Wu
α \ α,

V̂f = Vf /f . Denote pf : Vf → V̂f

the natural projection. Then V̂f

is homeomorphic to S2 × S1, pf

is cover and L̂s
f = pf (Ws

σ \ σ) is
homeomorphic to T2.

Theorem

( Ch. Bonatti , V. Grines , 2000) Diffeomorphisms f , f ′ ∈ P are
topologically conjugated if and only if there is a
homeomorphism ϕ̂ : S2 × S1 → S2 × S1 such that ϕ̂(L̂s

f ) = L̂s
f ′ .



Global dynamic of Morse-Smale diffeomorphisms.

Let f be a Morse-Smale diffeomorphism on 3-manifold. Let us
denote by Ωq, q = 0, 1, 2, 3 the set of all periodic points with
Morse index q.

We set Af = Ω0 ∪Wu
Σ1

,
Rf = Ω3 ∪Ws

Σ2
. It is possible to

prove that Af (Rf ) is a
connected set which is an
attractor (a repeller) of f .



Scheme of Morse-Smale diffeomorphism f

Set Vf = M3 \ (Af ∪ Rf ) and V̂f = Vf /f . Denote by pf : Vf → V̂f

the natural projection and by ηf : π1(V̂f )→ Z epimorphism,
induced by cover pf . Set L̂s

f = pf (Ws
Ω1

) and L̂u
f = pf (Wu

Ω2
).

Definition

The collection Sf = (V̂f , ηf , L̂
u
f , L̂

s
f ) is called scheme of the

diffeomorphism f .



Heteroclinic lamination



The results was obtained in collaboration with
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The scheme is complete invariant

Definition

The schemes Sf = (V̂f , ηf , L̂
u
f , L̂

s
f ) and Sf ′ = (V̂f ′ , ηf ′ , L̂

u
f ′ , L̂

s
f ′) of

diffeomorphisms f , f ′ are called equivalent if there is a
homeomorphism ϕ̂ : V̂f → V̂f ′ such that
1) ηf = η

f ′ ϕ̂∗;
2) ϕ̂(L̂u

f ) = L̂u
f ′ , ϕ̂(L̂s

f ) = L̂s
f ′ .

Theorem

(Ch. Bonatti, V. Grines, O. Pochinka, 2019) The
diffeomorphisms f , f ′ are topologically conjugated if and only if
their schemes are equivalent.



Hyperbolic non-wandering set

Definition

Nonwandering set Ω(f ) is hyperbolic if there is continuous
df -invariant splitting

TΩ(f )M
n = Es

Ω(f ) ⊕ Eu
Ω(f )

of tangent subbundle TΩ(f )Mn in sum of stable and unstable
subbundels such that the following estimates hold:

‖df k(v)‖ ≤ CBk‖v‖, ‖df−k(w)‖ ≤ CBk‖w‖

for some real numbers C > 0 and 0 < B < 1,
and for any v ∈ Es

Ω(f ),w ∈ Eu
Ω(f ), k ∈ N.



A-diffeomorphisms

Definition

Diffeomorphism f : M → M is called A-diffeomorphism if f
satisfies to S. Smale axiom A, that is
• nonwandering set Ω(f ) is hyperbolic;
• set of periodic points is dense in Ω(f ).

Axiom A and the strong condition of transversality are
necessary and sufficient condition for the structural stability of a
diffeomorphism f : Mn → Mn.



Basic sets

According to S. Smale spectral theorem nonwandering set Ω(f )
is the union of pair disjoint closed invariant sets each of which
contains dense orbit under action of diffeomorphism f .

Ω(f ) = B1 ∪ B2 ∪ · · · ∪ Bl

where l ≥ 1
An invariant set B of diffeomorphism f : M → M is called
attractor if there is a closed neighborhood U of the set B such
that f (U) ⊂ int U,

⋂
j≥0

f j(U) = B. An invariant set is called

repeller if it is attractor for f−1.



Codimension one basic set is attractor or repeller

According to R. Plykin any basic set B of A-diffeomorphisms
f : Mn → Mn such that dim B = n− 1 is attractor or repeller.
If B is an attractor then for any point x ∈ B unstable manifold
Wu(x) belongs to B.

Definition

An attractor B of f is called expanding attractor of f if it’s
topological dimension is equal to dimension of Wu(x) for any
point x ∈ B. A repeller B is called attracting repeller if it is
expanding attractor of f−1.

According to R. Plykin any expanding attractor of codimension
one of f : Mn → Mn is locally homeomorphic to product of
(n− 1)-disk and Cantor set.



f : M2 → M2, dim B = 2

• dim B = 2. Anosov diffeomorphism given on torus T2, first

example belongs to R. Thom : C =

(
2 1
1 1

)
.

If dim B = 2 then f is Anosov diffeomorphism and topological
classification was first obtained by Ya.G. Sinai in 1968.



f : M2 → M2, dim B = 1

Any one-dimensional basic set of A-diffeomorphism is either
expanding attractor or attracting repeller.
The first well known example is one-dimensional orientable
attractor of DA-diffeomorphism given on torus T2.

The second is celebrated non-orientable Plykin attractor of
A-diffeomorphism given on S2.



Classification of nontrivial attractors and repellers on
orientable surfaces

The problem of topological classification of such basic sets was
posed by L.P. Shilnikov in 1970 and was solved by V.Z. Grines in 1974
for orientable basic sets. Then this problem was solved
completely for arbitrary attractors on surfaces in series papers
by R.V. Plykin , A.Yu. Zhirov , X.X. Kalay , V. Grines .



Canonical support

For arbitrary one-dimensional attractor B ⊂ Ω(f ) of
diffeomorphism f : M2 → M2 there is a compact orientable
surface NB — (canonical support) of negative Eiler
characteristic χ(NB) and diffeomorphism fB = f |NB : NB → NB.



Universal cover

We consider the Poincare disk model of the hyperbolic plane as
the unit open ball U = {z ∈ C : |z| < 1} of the complex plane.
The boundary of the ball U is called the absolute of the
hyperbolic plane denoted by E (E = ∂U = {z ∈ C : |z| = 1}).

If we glue two copies of NB
along the boundary
components we get a surface
F without boundary. Then
there is a group GNB of
isometries and a connected
set UNB ⊂ U such that
pB : UNB → NB is a universal
cover.



Asymptotic direction

Set p−1
B (B) = B̄. Each curve wδν

x̄ has the asymptotic direction δνx̄
for t→ ν∞, ν ∈ {−,+}, that is if cl(wδν

x̄ ) \ wδν
x̄ consists of the

point x̄ and the point δνx̄ which belongs to E.



The classification theorem

A lift f̄B : UNB → UNB of fB = f |NB with respect pB induces an
automorphism Tf̄B of the group GNB which acts by the formula
Tf̄B(g) = f̄Bgf̄−1

B .

Theorem

( V. Grines ) Let f : M2 → M2, f ′ : M′2 → M′2 be A-diffeomorphisms
with one-dimensional attractors B,B′ accordingly. Then
f |B, f ′|B′ are topologically conjugated if and only if there is an
isomorphism ψB : GNB → GNB′ such that Tf̄ ′B′

= ψBTf̄Bψ
−1
B for

some f̄B, f̄ ′B′ .





n = 3, M3– closed orientable 3-manifold. Examples of two-
dimensional expanding attractor

DA-diffeomorphisms with 2-dimensional expanding attractors It
means that topological dimension of such attractor is equal to
dimension of unstable manifold of any point belonging to
attractor.



n = 3, M3– closed orientable 3-manifold. Examples of basic
sets B:

Diffeomorphisms given on T3 with 2-dimensional attractor and
repeller being 2-dimension tori. Restrictions of diffeomorphism
to such basic set topologically conjugated with Anosov
diffeomorphism.
It is clear that such basic set is not expanding attractor or
attracting repeller.





C. Bonatti problem. Topological structure of basic set of
dimension 2

Theorem (Brown, 2010)

Any connected two-dimensional basic sets of diffeomorphisms
of three-dimensional manifold is exactly one of the following:

1 expanding attractor
2 attracting repeller
3 two-dimensional torus.



Two-dimensional expanding attractors and topology of an
ambient manifold M3

Theorem (Grines, Zhuzhoma, 2004)

Let f : M3 → M3 is structurally stable diffeomorphism,
nonwandering set of which contains a two-dimensional
expanding attractor. Then the manifold M3 is diffeomorphic to
the torus T3 and f is topologically conjugated with the
diffeomorphism obtained from Anosov diffeomorphism by the
generalized surgery operation.



Surface basic set

Definition

A basic set of diffeomorphism f : M3 → M3 is called surface
basic set if it belongs to a f -invariant closed 2-dimensional
manifold M2.

Theorem (Grines, Medvedev, Zhuzhoma 2005)

Let f : M3 → M3 diffeomorphism, nonwandering set of which
contains a connected two-dimensional surface attractor B.
Then B = M2, M2 is tamly embedded torus, and the restriction f
to M2 is conjugated with an Anosov automorphism of the torus.

Remark

The two-dimensional torus may be no smooth at any point
(Kaplan J, Mallet-Parret J, Yorke J, 1984).



Two-dimensional basic sets and the structure of the
ambient manifold of M3

Theorem (V.Z. Grines, V.S. Medvedev, Ya. A. Levchenko
(2010))

Let Ω(f ) of f : M3 → M3 consists of a two-dimensional surface
basic sets. Then M3 is a locally trivial bundle over the circle with
fiber homeomorphic to a two-dimensional torus.



The structure of the ambient manifold of M3

Denote by Mτ quotient space obtained from T2 × [0, 1] by
identifying the points (z, 1) and (τ(z), 0) where τ : T2 → T2 a
homeomorphism.



The structure of the ambient manifold of M3

Theorem

If a closed oriented 3-manifold M3

1) either is irreducible and admits diffeomorphism f such that
there is f -invariant smooth torus T2 and restriction f to T2

induces hyperbolic automorphism in homology group [F. R.
Hertz, M. A. R. Hertz, R. Ures (2011)]
2) or admits A-diffeomorphism f such that nonwandering set
Ω(f ) consists of 2-dimensional surface attractors and repellers
[V. Grines, Yu. Levchenko, O. Pochinka (2013)]
Then M3 is diffeomorphic to MĴ, where Ĵ algebraic
automorphism of the torus given by the matrix J, which is either

hyperbolic or coincides with the matrix I =

(
1 0
0 1

)
or with the

matrix −I =

(
−1 0
0 −1

)
.



Classification theorem

Theorem (V. Grines, Yu. Levchenko, V. Medvedev, O.
Pochinka (2015))

Every A-diffeomorphism f such that the non-wandering set Ω(f )
consists of 2-dimensional surface attractors and repellers is a
locally direct product of a hyperbolic automorphism of the
2-torus and rough diffeomorphism of the circle.
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An equilibrium point x0 where v(x0) = 0, is said to be hyperbolic
if none of the eigenvalues of the linearization of v at x0 is purely
imaginary. A periodic orbit of a flow is said to be hyperbolic if
none of the eigenvalues of the Poincare return map at a point
on the orbit has absolute value one.

Figure: Hyperbolic equilibrium
points

Figure: Hyperbolic periodic orbit
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Saddle connection refers to a situation where an orbit from one
saddle point enters the same (homoclinic orbit) or another
saddle point (heteroclinic orbit), i.e. the unstable and stable
saddle separatrices are connected.

Figure: Homoclinic connection

Figure: Heteroclinic connection
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Figure: Irrational winding of the torus
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