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@ Short-wave solutions, corresponding to Lagrangian
manifolds
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e Asymptotics in the case of regular velocity
@ Reflection and refraction of Lagrangian surfaces
@ Asymptotics of the solution to the Cauchy problem



Short-wave solutions for equations with smooth coeffici
Short-wave solutior ~orrespondin

Short-wave solutions, corresponding to comp

Cauchy problem for e-pseudodifferential evolutionary equation

0 0
isa—ltl = H(x, —isa)u, x € R% e — +0,

H(x,p) : R?™ — R is smooth.

iSq(x)

u|t=0 = @O(X)e =, So€ Cooasoo € CSO




Short-wave for equat with smo
wave solutions, corresponding to Lagrangian ma

wve solutions, corresponding to complex vector

Puc.: Wave packet



Short-wav
Short-wave solutions, corresponding to Lagrangian mar

Short-wave solutions, corresponding to complex vector

Rapidly oscillating wave packet - Sy is real. Asymptotic
solution. Consider initial Lagrangian surface Ay C R?", p = %
and shift it by the flow g of the classical Hamiltonian system

_oH . OH
“op YT T ax

X )At = gt/\0~

Volume form ¢ = dx on Ag, oy = gidx on A¢



Short-wave solutions, corresponding to Lagrangian mar
Short-wave solutions, corresponding to complex vector

Theorem

(V.P. Maslov, ~ 1965). Under certain technical conditions the
solution u(x, t,h) can be represented as asymptotic serie

u~ K/\t»o't (Z €k(pk)7
k=0

K : CF(A;) = C>*(RY) is the Maslov canonical operator, ¢y are
smooth functions on Ay, po(a) = ¢%(g_sa).




Short-wave

Short-wave solutions, corresponding to Lagrangian mau

Short-wave solutions, corresponding to complex vecto

Puc.: Squeezed state



Short-wav
Short-wave solutions, corresponding to Lagrangian mau

Short-wave solutions, corresponding to complex vector

Localized ("squeezed") initial state Sp(x) is complex, IS > 0,
3Sp = 0 on the smooth k-dimensional surface W, d?$Sg|nr, >0.
Consider k-dimensional isotropic surface Ay C R?":

x € Wo,p = % and n-dimensional complex vector bundle pg
over Ay (Maslov complex germ): fiber p(x,p) is the plane in

CTX7 R2" p= 82520 &«. Shifted bundle Ay = gyAg, py = dgepo.




Short-wave solutions, corresponding to Lagrangian ma
Short-wave solutions, corresponding to complex vector

Theorem

Under certain technical conditions the solution u(x, t,h) can be
represented as asymptotic serie

un~ IA{/\typt(Z o),
k=0

K : CP(As) — C®°(R2) is the Maslov canonical operator on the
complex germ, ¢ are smooth functions on Ay,

wo(a) = ¢*(g-ta).




Short-wave solutio 0 ations with smooth coeffici
Short-wave solutions, corresponding to Lagrangian mau

Short-wave solutions, corresponding to complex vector

Simplest case:

SO = (pOuX_XO)—f_%(X_XOu QO(X_XO)))7 Po S an Qt = Q7 %Q > 0.

Wy is the point xg, po : {p = Qoéx-
iS(x,t)

u(x, t,h) ~e e ) (Mol t).

k=0




Short-wave solutions for equations with smooth coeffici

Short- solutions, corresponding to Lagrangian mai
Short-we solutions, corresponding to complex vector

What happens if coefficients of initial equation contain
singularities?




Equation with delta-potential
Reflection of L manifolds

Schrédinger equation with delta-potential

Reflection of vector bundles

. Ou g2
fem = —EAu + V(x)u + q(x)omu,

iSq

Ult=0 = ‘Poe e
M is a smooth oriented hypersurface, Sg is real. Boundary
conditions on M:

u_|M Ut |M,E 9 M qu
+ 1M M M



Equation with delta-potential
Refl tlon of L'Lg3 ian manifolds

Schrédinger equation with delta-potential

2n+2
(x,t,p,p0)"
t=0,p= 880 ,H=0,H=po — %|p]2 — V(x), Lagrangian
manifold /\Jr - s 8s/\o-

Hypersurface M € R22 x € M. Nt = A M. For x € M let p,
denote thg prOJ?CthD of p to TxM, p, — normal component.
Map Q : M — M, Q(x,t, pr, Pn, Po) = (X, t, P, —Pus Do),

N~ = Q(NT). Reflected Lagrangian manifold A~ = |J,gsN ™.

Extended phase space R Isotropic surface Ag:



Equation with delta-potential
Reflection of Lagrangian manifolds
Reflection of vector bundles

Schrédinger equation with delta-potential

Volume form. On Ay we have oy = dx, construct invariant form
on At: o (a,s) = gfog Ads. On NT consider ip, 0, map it to
N~ and construct invariant form o .



Equation with delta-potential
Reflection of Lagrangian manifolds
Reflection of vector bundles

Schrédinger equation with delta-potential

Consider formal series

o0 o0
u=Kn (O ") + K- (O hop)
k=0 k=0

on the negative side of M,
o0
u= K/\*(Z )
k=0

on the positive side.

2ipy
2ipn +q

-9

4+
a4+ 2ipy 70 s

©pIn+ = ot Nt g In- =



Equation with delta-potential
Reflection of Lagrangian manifolds
Reflection of vector bundles

Schrédinger equation with delta-potential

Theorem

This series is asymptotic for the solution of the Cauchy problem
for t € [0, T].

2ipn —q
T = ~_ . 9 r—= o o
2ip, +q q+ 2ipn

are the analogs of the coefficients of transmission and reflection.




Equation with botential
Reflection of Lz ian manifolds
Reflection of vector bundles

Schrédinger equation with delta-potential

Reflection of vector bundles
Rules of reflection

The fibers are positive complex Lagrangian planes — quadratic
forms on TpR™. On TpM it is shifted by p,b, where b is the
second fundamental form of M, on the pair (m, ) — be the
value p,d¢(V), on the pair (m,m) — by p29m(V).



Equation with d: potential
Reflection of L i
Reflection of vec

Schrédinger equation with delta-potential

Wave equation

2
@:CQ Mﬂ( Au, xeRY,
ot2 €

e — 0.

®(x) : R* — R is a smooth function, and the equation ® = 0
defines a smooth regular hypersurface M C R"

c(y,x) : R®! — R is smooth and strictly positive,

c(y,x) = ¢T(x) as y — oo and c(y,x) = ¢ (x) as y — —oc.
Initial conditions

iSg(x)
u|t:0 = SOO(X)G E ) ut\t:o =0.




Equation with delta-potential
Reflection of I \ngian manifolds

dinger equation with delta-potential

Puc.: Scattering



Equation with ¢ tential
Reflection of Lz ian manifolds
Reflection of vector bundles

Schrédinger equation with delta-potential

Fast variable y = ®(x)/e

A — i(:2( x) eV + VCD2 2
52 Y’ ay ?

Leading e-symbol
0
2 - 2
— , —iVe—)~.
Fx.y)(p ~ Vo)
Standard scheme for the case of discrete spectrum classical
Hamiltonians are eigenvalues A(p,x) of the symbol.

In our case, the spectrum of the symbol contains a continuous
component.



ve asymptotics in the case of lar velocity

Wave equation.One-dimensional case tion of short waves from a localized barrier

One-dimensional case.
Let x € R, M is a point x¢; ®(x) = x — Xo.



Shortwave asy’ mptotics in the case of regular velocity

Wave equation.One-dimensional case Reflection of short waves from a localized barrier

Regular velocity ¢ = ¢ (x).

tion

For n =1 and ¢ = ¢~ (x), the solution of the Cauchy problem
can be expanded in the asymptotic series

uwz Xt)25k 12x,t)7

where z(x,t) is found from the equation

t:/: jé)
e




Shortwave asymptotics in the case of regular velocity
Wave equation.One-dimensional case Reflection of short waves from a localized barrier

Remark

The summands with thee superscript “2” describe the wave
propagating to the right and those with the superscript “1” to
the left.

| \

Remark

The corrections @y are expressed by explicit formulas using
S7 Ply---y Pk—1-

A\




Shortwave asymptotics in the case of regular velocity
Wave equation.One-dimensional case Reflection of short waves from a localized barrier

Remark

If ¢ contains a rapidly changing part (c = ¢(*2*2,x)), then the
solution of the Cauchy problem still has the indicated form for
sufficiently small times, until the initial packet had time to
reach the zone of rapid speed changes. Times like this are given

by the inequality

¥ dx
t < min — =9
= zEsuppep? /z C(X) )

where ¢ is an arbitrarily small positive number independent of €.

<




Shortwave asymptotics in the case of regular velocity

Wave equation.One-dimensional case Reflection of short waves from localized barrier

Rapidly varying velocity. When the wave packet reaches the
point xg, it splits into two packets, the transmitted and reflected
ones. The reflection process is described by the second-order
ordinary differential equation

d2g

d2

where V = kQ(C \X_XO =
X = 88%, and SjE are the phases of the transmitted and reflected
waves; explicit formulas for them are given below. Note that

V — V* as y — 400, where VT = x2, V- = k?; this equation
has a unique solution go(y,t) with the following behavior at
infinity:

+ V(y,t)g =0,

2(C+ 2

|x=xo; here k = 2 a — and

go = e 4™ a5y —o00; go— 7Y as y — +o0.

Here r(t) and 7(t) are called the (complex) reflection and
transmission coefficients, respectively.



Shortwave asymptotics in the case of regular velocity
Wave equation.One-dimensional case Reflection of short waves from a localized barrier

Theorem

On every finite closed interval, the solution of the Cauchy
problem can be expanded in the asymptotic series

oo
is1 (x,t) 152 (x,t) X — X
uwg ele™ = pl(x,t)+e < f2 — X, 0 ) +
k=0

iSt(x,t) X — X iST(xt) . [ X—X
g () (o,

where

S*(x,t) = So(wr(x, 1)),

wsatisfies the equation

/XO dx i/x dx -
wt T(X) T Sy ¢F(x)




Shortwave asymptotics in the case of regular velocity

Wave equation.One-dimensional case Reflection of short waves from a localized barrier

S% = So(2(x0, t — /X &));

o ¢ (x)
flf(y,x) — gpf(x,t) as y — *oo, ff(y,x) —0 as y— Foo,

flf(y,x) — gpi(x,t) as y — —o00, fﬁ(y,x) —0 as y— +oo.

2

The functions golf 12 are smooth; they are evaluated explicitly.



Shortwave asymptotics in the case of regular velocity

Wave equation.One-dimensional case Reflection of short waves from a localized barrier

The leading part of the asymptotics:

Pp(x.t) = ;wo(z(x,t))m,
s o 25
L=

H(x)




Shortwave asymptotics in the case of regular velocity

Wave equation.One-dimensional case Reflection of short waves from a localized barrier

£ (v, %0, t) = of (x, t)n(y), f3(v,x0,t) = @§(x, t)(1—n(y))+&(y, t),

fo (v, x0,t) = o (1 —n(y)),n(y) = %(1 + tanhy),

8(v:t) = 9§ (x0, t)lgo(y, t)e ™™ —(1=n) =7(t)ne¥ X —x(t) (1—n)e ]

Here z(x,t) is the solution of the equation

/ZX c-d(gf) -t




Wave equation.One-dimensional case

Remark

The asymptotics of the solution consists of four wave packets:
the first, marked with “1”, propagates to the left and does not
interact with the rapidly changing part of the speed. The wave
propagating in the direction of the point x¢, marked with “2”, is
divided after reaching this point into two waves: the transmitted
(marked with “+7) and reflected (marked with  -”). All waves
move with the unperturbed speed; the waves to the left of the
point xg move with the speed ¢~ ; the wave to the right of xq
(i.e., transmitted) moves with with the speed c*; at the point
Xg, the amplitudes of the transmitted and reflected waves are
proportional to the coefficients 7 and r, respectively.




Shortwave asymptotics in the case of regular velocity

Wave equation.One-dimensional case Reflection of short waves from a localized barrier

The phases S satisfy the Hamilton—Jacobi equations

98t 99t 51
5 + ¢ (x) . =0, —

_, 087!t
ot —c (%) ox

= 0;

here, for S%2, the initial conditions are posed at t = 0, and for
S* a boundary condition is posed at xg: S™2|;—o = So(x),
Si|X:X0 = S2‘X:X0-

At the point xg, ¢~ 22 = —¢= 9~ — ¢+ 35" (the reflection).
ox ox ox



Shortwave asymptotics in the case of regular velocity

Wave equation.One-dimensional case Reflection of short waves from a localized barrier

The amplitudes +1,2 satisfy the transport equations
%o
5812 8()0671,2 5812 890(?1’2

_2
ot ot - ox ox +

1 2a—,1,2 2a+,1,2
L (s B PN el SE2 0,
2 ot2 Ox2 0
0S* dpl o, OSTOpl 1 (0%t o 0°StT\ ,
o o ¢ ®arax talae ¢ Wga ) =0



Shortwave asymptotics in the case of regular velocity

Wave equation.One-dimensional case Reflection of short waves from a localized barrier

For the functions cp(l)’Q, the conditions are posed at t = 0 and, for
the functions <p§, at the point xq:

_ 1
of lt=0 = ¢ lt=0 = §¢0(X)7

Soa’XZXO = r(t)‘P(%|X=XOa SDSF|X=XO = T(t)‘P(%|X=X0-



Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

Multidimensional case. Two new effects.
1. Focal points. Use of Maslov canonical operator.

2. Total reflection. Transmitted wave can dissapear.



Wave equation. Multidimensional case

MNonxoe oTpa)keHue

Puc.: Total reflection



Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

Regular velocity ¢ = ¢~. In R?"*2 with the coordinates
(x,t,p,p0), P € R™, pg € R, consider a smooth n-dimensional
isotropic surface Ay given by the equations x € U, p = VSg,

t =0, p — c&|p|> = 0, where U is an arbitrary neighborhood of
the support of the function ¢°; this surface consists of two
components /\(1)’2 given by the conditions (po F co|p|)[,1.2 = 0.
Let us move the surface Ag along the trajectories of thoe
Hamiltonian system

_OH . oH . OoH oH

= — = —— = — :—7_0
X 8p7 p ({')X’ apo’ Po ot )

where H(x, t, p,po) = pg — (¢7)?(x)|p|?; let A = Uyer 8sMNo- We

assume that T is such that the intersection of A with the domain
x € U, t € (=0, T+0) for some § > 0 is a smooth submanifold; it
also consists of two components A2 (obtained by shifting /\(1)’2).



Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

Assertion

For t € [0, T], the solution of the Cauchy problem is expanded
in the asymptotic series

o0
u = K/\(Z 8k<)0k)7
k=0

where K stands for the canonical Maslov operator, () are
smooth functions on A; the function g is obtained from the
initial function ¢ by a shift along the trajectories of the
Hamiltonian system:

1,
2o(0) = 57°6%(g-sa), a€Ng o €N

is the natural projection R%}?I;po) — RZ.




Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

Let ¢ = c(@, x); we assume that V& # 0 in R™ and, moreover,
|[V®| =1 in a neighborhood of M (i.e.,  is the distance to M
along the normal). Consider two Hamiltonian systems

. _OH* . OHF f_ﬁHi ___aHi_O )
X = apa p_ axv - ap[)) pO_ 8‘5 - Y

where HE(x, t,p, po) = p3 — (¢)?(x)|p|?;

Suppose that the projections of the trajectories of these systems
to RY are transversal to M; consider in R?"*2 the surface M
given by the equation ®(x) = 0 (the lifting of M to the phase
space), and let N2 = A2 1\71; we assume that N? is a smooth
connected surface. For every x € M, denote by p, the projection
of the vector p to the tangent plane TyM, and by py the normal
component of this vector (p, = (p, VP)).



Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

We assume that on the surface N2, for some § > 0, one of the
two conditions is satisfied
@ Refraction
(c™)?pl* = (¢7)’p2 = 6,

or

@ Total reflection

(c)?p|* = (c")?p2 < =5 < 0.



Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

First case.

Consider the mappings QT : M — M defined by the formulas
Q*(%,t,Pr, o) = (X, t,Pry Py )s P = —Dn,

Py = ((Ci);hzf:)gﬁ)zﬁ)1/2, and let N* = Q*(N?). We move N*
along the trajectories of the Hamiltonian systems; we obtain
surfaces AT = User gfN* | We assume that the intersections of
A2 with the domain t € (—d, T + §) are smooth

(n + 1)-dimensional submanifolds, and A®2 M = N+2,
Moreover, suppose that in the domain t € (=4, T 4 §) we have
A'(M = 0 (the corresponding trajectories go away from M).
The surfaces A2, AT define the asymptotics of the solution to
the Cauchy problem.



Asymptotics in the case of regular velocity

Wave equation. Multidimensiona

The construction of the canonical operator involves the volume
form on the Lagrangian manifold; we construct such forms on
A+12 On the starting surface Ag we define the volume form
dog = dxy A ...dx, and extend it to volume forms do? on A2
invariant with respect to the trajectories (if a« € A, o = g avp,
g € N, then do(a) = (g7 )*dog A ds). On the surface N? we
consider the form do/d®, transfer it to N by the
diffeomorphisms QF, and extend these forms again to invariant
volume forms do* on A*. Thus, invariant volume forms are
defined on four invariant Lagrangian manifolds A®12.



Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

In the second case, we will consider only the surface N~ with
the form do~ (the mapping Q% in this case is not defined)



Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

Consider a second-order differential equation with respect to the
variable y whose coefficients depend on the point « of the
surface N2,
d’g (c)*(x)
- —+V =0, V=|pu? 222 D
dy2 + (Oé)g ) ‘p ’ + ’p‘ ( CQ(Y,X) )|M



Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

In the case 1 there exists a solution gy such that

. . -
go — ePV4re™PY as y — —o0; go = 7enY as y — 400,

o 21412 _ c 2.2
= (( ) Ip(lc+)2( ) D7 y1/2

)
while in the case 2
go — PV pre Y as y 00, gg = Te ¥ as y — +oo,

B GO R G e Uty
(cF)?

T(a) u r(a) — coefficients of transmission and reflection.

)



Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

Theorem

Case 1. For t € [0, T], the solution to the Cauchy problem is
expanded in the asymptotic series

u=Ku (i ekfﬁ(a)> + Kp+ (i o (cng)’a>) +
k=0

k=0

e (e (B0




Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

« is the point of the corresponding manifold, K stands for the
Maslov canonical operator, the functions fﬁ are the same as in
the previous assertion,

ff(y,oz) — g@f(a,t) as y — £oo, fki(y,oz) —0 as y— Foo,
2(y,a) = ¢i(a,t) as y— —oo, fi(y,a) =0 as y— 4oo,
the functions goﬁ are the same as in the previous assertion. The
leading part of the asymptotic is as follows:

vo (@) = pi(@)(a), g (@) = gila)x(a),
f (v,@) = g (@n(y), 5 (v, @) = g (@)1 = n(y)) + &(y, @),
where

1 n —i
n(y) = 5(1+ tanhy),  &(y,a) = ¢f(a)[go(y, ')e ™~

—(1—n) = ()0 — (o) (1 — p)e~ 2],
Here o/ € N* o € AT and o = geo/.



Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

Theorem
Case 2.
o0 o q)
u=Ku Zakfﬁ(a) + K- Z ekt ((EX), a) =
k=0 k=0

(o]
P(x)
K k2
+K2 Esfk( - ,a) ;
k=0
% (v, a) = ¢ (o) as y — —oo,

fk_’2(y, a) =0 as y— 4oo,




Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

0o (@) = go(a)r(a), Ty =@y (1—n(y)),
5y, ) = ¢g (@) (1 = n(y)) + &y, o),

W) = L(1+tanhy),  &(y.a") = @B laoly. o) -

—(1 =) = 1(a')(1 — n)e™ 2],

o eNT,ae N, a =g«



Asymptotics in the case of regular velocity

Wave equation. Multidimensional case

THANK YOU

FOR YOUR

ATTENTION!
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