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Cauchy problem for ε-pseudodifferential evolutionary equation

iε
∂u
∂t

= H(x,−iε ∂
∂x

)u, x ∈ Rn, ε→ +0,

H(x, p) : R2n → R is smooth.

u|t=0 = ϕ0(x)e
iS0(x)
ε , S0 ∈ C∞, ϕ0 ∈ C∞0 .
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Rapidly oscillating wave packet - S0 is real. Asymptotic
solution. Consider initial Lagrangian surface Λ0 ⊂ R2n, p = ∂S0

∂x
and shift it by the flow gt of the classical Hamiltonian system

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

,Λt = gtΛ0.

Volume form σ0 = dx on Λ0, σt = g∗tdx on Λt
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Theorem
(V.P. Maslov, ∼ 1965). Under certain technical conditions the
solution u(x, t, h) can be represented as asymptotic serie

u ∼ KΛt,σt(
∑
k=0

εkϕk),

K : C∞0 (Λt)→ C∞(Rn
x) is the Maslov canonical operator, ϕk are

smooth functions on Λt, ϕ0(α) = ϕ0(g−tα).
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Localized ("squeezed") initial state S0(x) is complex, =S0 ≥ 0,
=S0 = 0 on the smooth k-dimensional surface W0, d2=S0|NL0>0.
Consider k-dimensional isotropic surface Λ0 ⊂ R2n:
x ∈W0, p = ∂S0

∂x and n-dimensional complex vector bundle ρ0
over Λ0 (Maslov complex germ): fiber ρ(x, p) is the plane in
CTx,pR2n, ξp = ∂2S0

∂x2 ξx. Shifted bundle Λt = gtΛ0, ρt = dgtρ0.
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Theorem
Under certain technical conditions the solution u(x, t, h) can be
represented as asymptotic serie

u ∼ K̂Λt,ρt(
∑
k=0

εkϕk),

K̂ : C∞0 (Λt)→ C∞(Rn
x) is the Maslov canonical operator on the

complex germ, ϕk are smooth functions on Λt,
ϕ0(α) = ϕ0(g−tα).
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Simplest case:

S0 = (p0, x−x0)+
1
2

(x−x0,Q0(x−x0))), p0 ∈ Rn,Qt = Q,=Q > 0.

W0 is the point x0, ρ0 : ξp = Q0ξx.

u(x, t, h) ∼ e
iS(x,t)
ε

∞∑
k=0

(εkϕk(x, t)).

S = q(t) + (P(t), x−X(t)) +
1
2

(x−X(t),Q(t)(x−X(t))),

Ẋ =
∂H
∂p

, Ṗ = −∂H
∂x

.
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Problem
What happens if coefficients of initial equation contain
singularities?
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iε
∂u
∂t

= −ε
2

2
∆u + V(x)u + q(x)δMu,

u|t=0 = ϕ0e
iS0
ε

M is a smooth oriented hypersurface, S0 is real. Boundary
conditions on M:

u−|M = u+|M, ε
∂u
∂m−

|M − ε
∂u
∂m+

|M = qu|M
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Extended phase space R2n+2
(x,t,p,p0). Isotropic surface Λ0:

t = 0, p = ∂S0
∂x ,H = 0, H = p0 − 1

2 |p|
2 −V(x), Lagrangian

manifold Λ+ =
⋃

s gsΛ0.
Hypersurface M̂ ⊂ R2n+2, x ∈ M. N+ = Λ

⋂
M̂. For x ∈ M let pτ

denote the projection of p to TxM, pn – normal component.
Map Q : M̂→ M̂, Q(x, t, pτ , pn, p0) = (x, t, pτ ,−pn, p0),
N− = Q(N+). Reflected Lagrangian manifold Λ− =

⋃
s gsN−.
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Volume form. On Λ0 we have σ0 = dx, construct invariant form
on Λ+: σ+(α, s) = g∗sσ0 ∧ ds. On N+ consider ipnσ+, map it to
N− and construct invariant form σ−.
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Consider formal series

u = KΛ+(
∞∑

k=0

εkϕ+
k ) + KΛ−(

∞∑
k=0

εkϕ−k )

on the negative side of M,

u = KΛ−(
∞∑

k=0

εkϕ∗k)

on the positive side.

ϕ∗0|N+ =
2ipn

2ipn + q
ϕ+

0 |N+ , ϕ−0 |N− =
−q

q + 2ipn
ϕ+

0 |N+
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Theorem
This series is asymptotic for the solution of the Cauchy problem
for t ∈ [0,T].

Remark

τ =
2ipn

2ipn + q
, r =

−q
q + 2ipn

are the analogs of the coefficients of transmission and reflection.
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Reflection of vector bundles
Rules of reflection

The fibers are positive complex Lagrangian planes – quadratic
forms on TPRn. On TPM it is shifted by pnb, where b is the
second fundamental form of M, on the pair (m, ξ) — be the
value pn∂ξ(V), on the pair (m,m) – by p2

n∂m(V).
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Wave equation

∂2u
∂t2

= c2
(

Φ(x)

ε
, x
)

∆u, x ∈ Rn,

ε→ 0.
Φ(x) : Rn → R is a smooth function, and the equation Φ = 0
defines a smooth regular hypersurface M ⊂ Rn

c(y, x) : Rn+1 → R is smooth and strictly positive,
c(y, x)→ c+(x) as y→∞ and c(y, x)→ c−(x) as y→ −∞.
Initial conditions

u|t=0 = ϕ0(x)e
iS0(x)
ε , ut|t=0 = 0.
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Fast variable y = Φ(x)/ε

c2∆→ 1
ε2

c2(y, x)

(
ε∇+∇Φ

∂

∂y

)2

,

Leading ε-symbol

−c2(x, y)(p− i∇Φ
∂

∂y
)2.

Standard scheme for the case of discrete spectrum classical
Hamiltonians are eigenvalues λ(p, x) of the symbol.
In our case, the spectrum of the symbol contains a continuous
component.
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One-dimensional case.
Let x ∈ R, M is a point x0; Φ(x) = x− x0.
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Regular velocity c = c−(x).

Assertion
For n = 1 and c = c−(x), the solution of the Cauchy problem
can be expanded in the asymptotic series

u ∼
∑
1,2

e
iS1,2(x,t)

ε

∞∑
k=0

εkϕ1,2
k (x, t),

S2,1 = S0(z(x,±t)), ϕ2,1
0 =

1
2

√
c(x)

c(z(x,±t))
ϕ0(z(x,±t)),

where z(x, t) is found from the equation

t =

∫ x

z

dξ
c0(ξ)

.
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Remark
The summands with thee superscript “2” describe the wave
propagating to the right and those with the superscript “1” to
the left.

Remark
The corrections ϕk are expressed by explicit formulas using
S, ϕ1, . . . , ϕk−1.
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Remark

If c contains a rapidly changing part (c = c(x−x0
ε , x)), then the

solution of the Cauchy problem still has the indicated form for
sufficiently small times, until the initial packet had time to
reach the zone of rapid speed changes. Times like this are given
by the inequality

t ≤ minz∈suppϕ0

∫ x0

z

dx
c(x)

− δ,

where δ is an arbitrarily small positive number independent of ε.
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Rapidly varying velocity. When the wave packet reaches the
point x0, it splits into two packets, the transmitted and reflected
ones. The reflection process is described by the second-order
ordinary differential equation

− d2g
dy2 + V(y, t)g = 0,

where V = k2(c−)2

c2 |x=x0 = χ2(c+)2

c2 |x=x0 ; here k = ∂S−

∂x and
χ = ∂S+

∂x , and S± are the phases of the transmitted and reflected
waves; explicit formulas for them are given below. Note that
V→ V± as y→ ±∞, where V+ = χ2, V− = k2; this equation
has a unique solution g0(y, t) with the following behavior at
infinity:

g0 → eiky + re−iky as y→ −∞; g0 → τeiχy as y→ +∞.
Here r(t) and τ(t) are called the (complex) reflection and
transmission coefficients, respectively.
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Theorem
On every finite closed interval, the solution of the Cauchy
problem can be expanded in the asymptotic series

u ∼
∞∑

k=0

εk[e
iS1(x,t)

ε ϕ1
k(x, t) + e

iS2(x,t)
ε f2k

(
x− x0

ε
, x, t

)
+

+e
iS+(x,t)

ε f+
k

(
x− x0

ε
, x, t

)
+ e

iS−(x,t)
ε f−k

(
x− x0

ε
, x, t

)
],

where
S±(x, t) = S0(w±(x, t)),

w±satisfies the equation∫ x0

w±

dx
c−(x)

±
∫ x

x0

dx
c±(x)

= t;
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S2 = S0(z(x0, t−
∫ x

x0

dx
c−(x)

));

f±k (y, x)→ ϕ±k (x, t) as y→ ±∞, f±k (y, x)→ 0 as y→ ∓∞,

f2k(y, x)→ ϕ2
k(x, t) as y→ −∞, f2k(y, x)→ 0 as y→ +∞.

The functions ϕ±,1,2k are smooth; they are evaluated explicitly.
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The leading part of the asymptotics:

ϕ2
0(x, t) =

1
2
ϕ0(z(x, t))

√
c−(x)

c−(z(x, t))
,

ϕ+
0 (x, t) = τ

(
t−

∫ x

x0

dx
c+(x)

)
ϕ2

0

(
x0, t−

∫ x

x0

dx
c+(x)

)√
c+(x)

c+(x0)
,

ϕ−0 (x, t) = r
(
t +

∫ x

x0

dx
c−(x)

)
ϕ2

0

(
x0, t +

∫ x

x0

dx
c−(x)

)√
c−(x)

c−(x0)
,
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f+
0 (y, x0, t) = ϕ+

0 (x, t)η(y), f20 (y, x0, t) = ϕ2
0(x, t)(1−η(y))+ĝ(y, t),

f−0 (y, x0, t) = ϕ−0 (1− η(y)), η(y) =
1
2

(1 + tanh y),

ĝ(y, t) = ϕ2
0(x0, t)[g0(y, t)e−iky−(1−η)−τ(t)ηeiy(χ−k)−r(t)(1−η)e−2iky].

Here z(x, t) is the solution of the equation∫ x

z

dξ
c−(ξ)

= t.
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Remark
The asymptotics of the solution consists of four wave packets:
the first, marked with “1”, propagates to the left and does not
interact with the rapidly changing part of the speed. The wave
propagating in the direction of the point x0, marked with “2”, is
divided after reaching this point into two waves: the transmitted
(marked with “+”) and reflected (marked with ‘ -”). All waves
move with the unperturbed speed; the waves to the left of the
point x0 move with the speed c−; the wave to the right of x0
(i.e., transmitted) moves with with the speed c+; at the point
x0, the amplitudes of the transmitted and reflected waves are
proportional to the coefficients τ and r, respectively.
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The phases S satisfy the Hamilton–Jacobi equations

∂S+,2

∂t
+ c+(x)

∂S+,2

∂x
= 0,

∂S−,1

∂t
− c−(x)

∂S−,1

∂x
= 0;

here, for S1,2, the initial conditions are posed at t = 0, and for
S± a boundary condition is posed at x0: S1,2|t=0 = S0(x),
S±|x=x0 = S2|x=x0 .
At the point x0, c− ∂S2

∂x = −c− ∂S−

∂x = c+ ∂S+

∂x (the reflection).
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The amplitudes ϕ±,1,20 satisfy the transport equations

∂S−,1,2

∂t
∂ϕ−,1,20
∂t

− c−2
(x)

∂S−,1,2

∂x
∂ϕ−,1,20
∂x

+

+
1
2

(
∂2S−,1,2

∂t2
− c−2

(x)
∂2S±,1,2

∂x2

)
ϕ±,1,20 = 0,

∂S+

∂t
∂ϕ+

0
∂t
− c+2

(x)
∂S+

∂x
∂ϕ+

0
∂x

+
1
2

(
∂2S+

∂t2
− c+2

(x)
∂2S+

∂x2

)
ϕ+

0 = 0.
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For the functions ϕ1,2
0 , the conditions are posed at t = 0 and, for

the functions ϕ±0 , at the point x0:

ϕ+
0 |t=0 = ϕ−0 |t=0 =

1
2
ϕ0(x),

ϕ−0 |x=x0 = r(t)ϕ2
0|x=x0 , ϕ+

0 |x=x0 = τ(t)ϕ2
0|x=x0 .
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Multidimensional case. Two new effects.

1. Focal points. Use of Maslov canonical operator.

2. Total reflection. Transmitted wave can dissapear.
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Рис.: Total reflection
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Regular velocity c = c−. In R2n+2 with the coordinates
(x, t, p, p0), p ∈ Rn, p0 ∈ R, consider a smooth n-dimensional
isotropic surface Λ0 given by the equations x ∈ U, p = ∇S0,
t = 0, p2

0 − c20|p|2 = 0, where U is an arbitrary neighborhood of
the support of the function ϕ0; this surface consists of two
components Λ1,2

0 given by the conditions (p0 ∓ c0|p|)|Λ1,2
0

= 0.
Let us move the surface Λ0 along the trajectories of the
Hamiltonian system

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

, ṫ =
∂H
∂p0

, ṗ0 = −∂H
∂t

= 0,

where H(x, t, p, p0) = p2
0 − (c−)2(x)|p|2; let Λ =

⋃
s∈R gsΛ0. We

assume that T is such that the intersection of Λ with the domain
x ∈ U, t ∈ (−δ,T+ δ) for some δ > 0 is a smooth submanifold; it
also consists of two components Λ1,2 (obtained by shifting Λ1,2

0 ).
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Assertion
For t ∈ [0,T], the solution of the Cauchy problem is expanded
in the asymptotic series

u = KΛ(
∞∑

k=0

εkϕk),

where K stands for the canonical Maslov operator, ϕk are
smooth functions on Λ; the function ϕ0 is obtained from the
initial function ϕ0 by a shift along the trajectories of the
Hamiltonian system:

ϕ0(α) =
1
2
π∗ϕ0(g−sα), α ∈ Λ, g−sα ∈ Λ0, π

is the natural projection R2n+2
(x,t,p,p0) → Rn

x.
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Let c = c( Φ(x)
ε , x); we assume that ∇Φ 6= 0 in Rn and, moreover,

|∇Φ| = 1 in a neighborhood of M (i.e., Φ is the distance to M
along the normal). Consider two Hamiltonian systems

ẋ =
∂H±

∂p
, ṗ = −∂H

±

∂x
, ṫ =

∂H±

∂p0
, ṗ0 = −∂H

±

∂t
= 0, (1)

where H±(x, t, p, p0) = p2
0 − (c±)2(x)|p|2;

Suppose that the projections of the trajectories of these systems
to Rn

x are transversal to M; consider in R2n+2 the surface M̂
given by the equation Φ(x) = 0 (the lifting of M to the phase
space), and let N2 = Λ2⋂ M̂; we assume that N2 is a smooth
connected surface. For every x ∈ M, denote by pτ the projection
of the vector p to the tangent plane TxM, and by pn the normal
component of this vector (pn = (p,∇Φ)).
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We assume that on the surface N2, for some δ > 0, one of the
two conditions is satisfied

1 Refraction
(c−)2|p|2 − (c+)2p2

τ ≥ δ,

or
2 Total reflection

(c−)2|p|2 − (c+)2p2
τ ≤ −δ < 0.
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First case.
Consider the mappings Q± : M̂→ M̂ defined by the formulas
Q±(x, t, pτ , p0) = (x, t, pτ , p±n ), p−n = −pn,
p+

n = ( (c−)2|p|2−(c+)2p2τ
(c+)2

)1/2, and let N± = Q±(N2). We move N±

along the trajectories of the Hamiltonian systems; we obtain
surfaces Λ± =

⋃
s∈R g±s N± . We assume that the intersections of

Λ±,2 with the domain t ∈ (−δ,T + δ) are smooth
(n + 1)-dimensional submanifolds, and Λ±,2

⋂
M̂ = N±,2.

Moreover, suppose that in the domain t ∈ (−δ,T + δ) we have
Λ1⋂ M̂ = ∅ (the corresponding trajectories go away from M).
The surfaces Λ1,2,Λ± define the asymptotics of the solution to
the Cauchy problem.
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Asymptotics in the case of regular velocity

The construction of the canonical operator involves the volume
form on the Lagrangian manifold; we construct such forms on
Λ±,1,2. On the starting surface Λ0 we define the volume form
dσ0 = dx1 ∧ . . . dxn and extend it to volume forms dσ1,2 on Λ1,2

invariant with respect to the trajectories (if α ∈ Λ, α = g−s α0,
α0 ∈ Λ0, then dσ(α) = (g−s )∗dσ0 ∧ ds). On the surface N2 we
consider the form dσ/dΦ, transfer it to N± by the
diffeomorphisms Q±, and extend these forms again to invariant
volume forms dσ± on Λ±. Thus, invariant volume forms are
defined on four invariant Lagrangian manifolds Λ±,1,2.
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In the second case, we will consider only the surface N− with
the form dσ− (the mapping Q+ in this case is not defined)
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Consider a second-order differential equation with respect to the
variable y whose coefficients depend on the point α of the
surface N2,

− d2g
dy2 + V(α)g = 0, V = |pn|2 + |p|2(

(c−)2(x)

c2(y, x)
− 1)|M.
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In the case 1 there exists a solution g0 such that

g0 → eipny+re−ipny as y→ −∞; g0 → τeip
+
n y as y→ +∞,

p+
n = (

(c−)2|p|2 − (c+)2p2
τ

(c+)2 )1/2,

while in the case 2

g0 → eipny+re−ipny as y→ −∞; g0 → τe−κy as y→ +∞,

κ = (
(c+)2p2

τ − (c−)2|p|2

(c+)2 )1/2,

τ(α) и r(α) — coefficients of transmission and reflection.
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Theorem
Case 1. For t ∈ [0,T], the solution to the Cauchy problem is
expanded in the asymptotic series

u = KΛ1

( ∞∑
k=0

εkf1k(α)

)
+ KΛ+

( ∞∑
k=0

εkf+
k

(
Φ(x)

ε
, α

))
+

+KΛ−

( ∞∑
k=0

εkf−k

(
Φ(x)

ε
, α

))
+ KΛ2

( ∞∑
k=0

εkf2k

(
Φ(x)

ε
, α

))
,
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α is the point of the corresponding manifold, K stands for the
Maslov canonical operator, the functions f1k are the same as in
the previous assertion,

f±k (y, α)→ ϕ±k (α, t) as y→ ±∞, f±k (y, α)→ 0 as y→ ∓∞,

f2k(y, α)→ ϕ2
k(α, t) as y→ −∞, f2k(y, α)→ 0 as y→ +∞,

the functions ϕ2
k are the same as in the previous assertion. The

leading part of the asymptotic is as follows:

ϕ+
0 (α) = ϕ2

0(α)τ(α′), ϕ−0 (α) = ϕ2
0(α)r(α′),

f+
0 (y, α) = ϕ+

0 (α)η(y), f−0 (y, α) = ϕ−0 (α)(1− η(y)) + ĝ(y, α′),

where

η(y) =
1
2

(1 + tanh y), ĝ(y, α′) = ϕ2
0(α′)[g0(y, α′)e−iky−

−(1− η)− τ(α′)ηeiy(χ−k) − r(α′)(1− η)e−2iky].

Here α′ ∈ N±, α ∈ Λ± and α = gsα
′.
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Theorem
Case 2.

u = KΛ1

( ∞∑
k=0

εkf1k(α)

)
+ KΛ−

( ∞∑
k=0

εkf−k

(
Φ(x)

ε
, α

))
+

+KΛ2

( ∞∑
k=0

εkf2k

(
Φ(x)

ε
, α

))
,

f−,2k (y, α)→ ϕ−,2k (α, t) as y→ −∞,

f−,2k (y, α)→ 0 as y→ +∞,
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ϕ−0 (α) = ϕ2
0(α)r(α′), f−0 = ϕ−0 (1− η(y)),

f20 (y, α) = ϕ−0 (α)(1− η(y)) + ĝ(y, α′),

η(y) =
1
2

(1 + tanh y), ĝ(y, α′) = ϕ2
0(α′)[g0(y, α′)e−ipny−

−(1− η)− r(α′)(1− η)e−2iky],

α′ ∈ N−, α ∈ Λ−, α = gsα
′.
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