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Quotient divisible groups

Definition [R.A. Beaumont, R. S. Pierce, 1961].

A torsion-free group G is quotient divisible (or simply q.d.)
if there is a finite-rank free subgroup F ⊂ G such that G/F
is a direct sum of a divisible torsion group and a bounded
group.

Theorem 1 [BP, 1961]. The following are equivalent:
1) G is a q.d. group.
2) There is a finite-rank free subgroup F ⊂ G such that
G/F is a divisible torsion group.

In 1998 Fomin and Wickless extended this definition to
arbitrary Abelian groups.
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Definition [A.A. Fomin, W. Wickless, 1998].
Let n > 0. A group G is a q.d. group of rank n if its torsion
part T (G) is reduced and there is a free subgroup F ⊂ G of
rank n such that G/F is a divisible torsion group.
Every such subgroup F is a fundamental subgroup of G,
and any free basis of a fundamental subgroup F is a
fundamental system of elements of G.

In 2007 Davydova described all q.d. groups of rank 1.

Let P be the set of all primes.

Theorem 2 [O. I. Davydova, 2007].
a) For any characteristic χ = (np)p∈P , the additive group of
Rχ is a q.d. group of rank 1 with fundamental subgroup 〈1〉.
b) Any q.d. group of rank 1 is isomorphic to the additive
group of some Rχ.
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Rings Rχ

χ = (np)p∈P with np ∈ N ∪ {0,∞};

L =
{
p ∈ P

∣∣ 0 < np <∞
}

;

Kχ =
∏
p∈L

Z/pnpZ;

Qχ is the subring of the field Q generated by the elements
1
p
such that np <∞.

If L is a finite set, then Rχ = Qχ ×Kχ.

If L is infinite, then Rχ is the ring of all elements
b = (bp)p∈L ∈ K

χ such that for some fraction u
v
∈ Qχ the

equality uep = vbp (where ep is the identity of the ring
Z/pnpZ) holds for almost all p ∈ L.
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Torsion-free finite-rank groups and q.d. groups

Theorem 3 [FW, 1998].
The category of torsion-free finite-rank groups (with
quasi-homomorphisms as morphisms) is dual to the
category of q.d. groups (with quasi-homomorphisms as
morphisms).

A quasi-homomorphism is an element of the group
Q⊗ Hom(A,B).

Two groups (rings) A and B are quasi-isomorphic if there
exist subgroups (subrings) A′ ⊂ A and B′ ⊂ B such that
nA ⊂ A′, nB ⊂ B′ (for some n ∈ N) and A′ ∼= B′.
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Definition. For p ∈ P , the p-rank of G is the dimension of
G/pG as a vector space over Z/pZ [notation: rp(G)].

Proposition 4. Let G be a q.d. group. Then
a) every fundamental system of G contains at least rp(G)
elements which are not in pG;

b) every fundamental subgroup of G has a free basis with
exactly rp(G) elements which are not in pG.

Theorem 5. Let G be a q.d. group of rank n and F be a
fundamental subgroup of G. Then

G/F ∼=
⊕
p∈P

⊕
n−np

Z(p∞),

where np = rp(G/T (G)).
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Let G be a torsion-free group of rank n and g1, g2, . . . , gn be
a system of independent elements.
It is known that the type t(g1)∧ t(g2)∧ . . .∧ t(gn) does not
depend on the choice of g1, g2, . . . , gn.

This type is denoted by it(G) [the inner type of G].

Proposition 6. If G is a torsion-free q.d. group, then the
type it(G) is idempotent.

Definition. Let H be a group with T (H) reduced and F
be a finite-rank free subgroup of H.
The sum of all q.d. subgroups G ⊂ H such that F is a
fundamental subgroup of G is called the quotient divisible
hull of F in H.

Theorem 7. The q.d. hull of F in H is the largest q.d.
subgroup of H that has F as its fundamental subgroup.
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Theorem 8. Let F be a finite-rank free subgroup of H.
The following are equivalent:

1) H is a q.d. group which has F as its fundamental
subgroup.
2) H is the union of a chain of q.d. subgroups
G1 ⊂ G2 ⊂ . . . Gn ⊂ . . . which have F as their fundamental
subgroup.
3) H is the union of a chain of q.d. subgroups
G1 ⊂ G2 ⊂ . . . Gn ⊂ . . . which have F as their fundamental
subgroup and have finite torsion parts.

Theorem 9 [A.A. Fomin].
The class of q.d. groups is closed under extensions.

Theorem 10. For any q.d. group H, there is a chain of
subgroups 0 = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gn = H such that all
Gi+1/Gi are q.d. groups of rank 1.



Theorem 8. Let F be a finite-rank free subgroup of H.
The following are equivalent:
1) H is a q.d. group which has F as its fundamental
subgroup.
2) H is the union of a chain of q.d. subgroups
G1 ⊂ G2 ⊂ . . . Gn ⊂ . . . which have F as their fundamental
subgroup.
3) H is the union of a chain of q.d. subgroups
G1 ⊂ G2 ⊂ . . . Gn ⊂ . . . which have F as their fundamental
subgroup and have finite torsion parts.

Theorem 9 [A.A. Fomin].
The class of q.d. groups is closed under extensions.

Theorem 10. For any q.d. group H, there is a chain of
subgroups 0 = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gn = H such that all
Gi+1/Gi are q.d. groups of rank 1.



Theorem 8. Let F be a finite-rank free subgroup of H.
The following are equivalent:
1) H is a q.d. group which has F as its fundamental
subgroup.
2) H is the union of a chain of q.d. subgroups
G1 ⊂ G2 ⊂ . . . Gn ⊂ . . . which have F as their fundamental
subgroup.
3) H is the union of a chain of q.d. subgroups
G1 ⊂ G2 ⊂ . . . Gn ⊂ . . . which have F as their fundamental
subgroup and have finite torsion parts.

Theorem 9 [A.A. Fomin].
The class of q.d. groups is closed under extensions.

Theorem 10. For any q.d. group H, there is a chain of
subgroups 0 = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gn = H such that all
Gi+1/Gi are q.d. groups of rank 1.



Theorem 8. Let F be a finite-rank free subgroup of H.
The following are equivalent:
1) H is a q.d. group which has F as its fundamental
subgroup.
2) H is the union of a chain of q.d. subgroups
G1 ⊂ G2 ⊂ . . . Gn ⊂ . . . which have F as their fundamental
subgroup.
3) H is the union of a chain of q.d. subgroups
G1 ⊂ G2 ⊂ . . . Gn ⊂ . . . which have F as their fundamental
subgroup and have finite torsion parts.

Theorem 9 [A.A. Fomin].
The class of q.d. groups is closed under extensions.

Theorem 10. For any q.d. group H, there is a chain of
subgroups 0 = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gn = H such that all
Gi+1/Gi are q.d. groups of rank 1.



Quotient divisible groups of rank two

For any isomorphism ϕ : A/A0 → B/B0, we can consider
the group

{
(a, b) ∈ A⊕B

∣∣ ϕ(a+ A0) = b+B0

}
.

Any torsion-free group G of rank 2 can be embedded in
Q⊕Q, so G has a representation of the following form:

G ∼= H =
{

(a, b) ∈ A⊕B
∣∣ ϕ(a+ A0) = b+B0

}
(0 6= A0 ⊂ A ⊂ Q, 0 6= B0 ⊂ B ⊂ Q, A/A0

ϕ∼= B/B0).
(1)

Such a representation is said to be
• good if the types t(A), t(B) and t(A0) ∧ t(B0) are
idempotent;
• very good if it is good and the group A/A0

∼= B/B0 is
divisible.
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Theorem 11. For a torsion-free group G of rank 2, the
following are equivalent:
1) G is a q.d. group.
2) G has a good representation of the form (1).
3) G has a very good representation of the form (1).
4) Every representation of G of the form (1) is good.
5) The type it(G) is idempotent, and every rank-1
torsion-free homomorphic image of G has an idempotent
type.

Example 12. There is a torsion-free q.d. group G of
rank 2 such that the type t(x) is nonidempotent for every
x ∈ G \ {0}.
Remark. In particular, G can not be endowed with a ring
structure.
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Example 13. Let L =
{
p ∈ P

∣∣ p = 4k + 1
}
and

K =
∏
p∈L

Z/pZ.

If G is the pure hull of {1, b} in K, where b2 = −1, then
• G is a mixed q.d. group of rank 2;
• G does not have a representation of the form (1) such
that A and B are q.d. groups of rank 1.

Definition. A q.d. group G is p-minimal if G/F ∼= Z(p∞)
for every fundamental subgroup F of G.
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Torsion-free p-minimal q.d. groups of rank 2

Jp is the ring of p-adic integers;
U(Jp) is the multiplicative group of Jp;
Q(p) is the subring of Q generated by 1

p
.

Theorem 14. For a group G, the following are equivalent:
1) G is a torsion-free p-minimal q.d. group of rank 2.
2) There is η ∈ U(Jp) such that G ∼= Hη, where

Hη =
{

(a, b) ∈ Q(p) ⊕Q(p)
∣∣ η(a+ Z) = b+ Z

}
.

Theorem 15. For η ∈ U(Jp), the following are equivalent:
1) η is rational.
2) Hη is a completely decomposable group.
3) Hη

∼= Q(p) ⊕ Z.
Proposition 16. If a number η ∈ U(Jp) is not rational,
then all rank-1 subgroups of Hη are isomorphic to Z.
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Proposition 17. If a number η ∈ U(Jp) is not rational,
then Hη is isomorphic to the p-pure hull of {1, η} in Jp.

Theorem 18. For η, ζ ∈ U(Jp), the following are
equivalent:
1) Hη

∼= Hζ .

2) There are a, b, c, d ∈ Z such that ζ =
c+ dη

a+ bη
and

ad− bc ∈ {±1,± p,± p2, . . .}.

Example 19. Choose η ∈ U(Jp) which is not a root of any
quadratic polynomial from Z[x] and a prime q 6= p.
By Theorem 18, we have Hη � Hqη.
On the other hand, there exist monomorphisms Hη → Hqη

and Hqη → Hη.
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E-rings

Definition [P. Schultz, 1973]. A ring R is an E-ring if
every endomorphism of R+ (the additive group of R) is a
left multiplication λr by some r ∈ R.
(In this case the correspondence r 7→ λr is a ring
isomorphism R→ EndR+.)

Every E-ring is a commutative ring with identity.

Definition. A ring R is a generalized E-ring if
R ∼= EndR+.

Theorem 20 [R. Göbel, S. Shelah, L. Strüngmann,
2004].
There are generalized E-rings which are not E-rings.
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By the rank of R we mean the torsion-free rank of R+.

Proposition 21. Finite-rank generalized E-rings are
E-rings.

It follows from the results of Bowshell and Schultz [1977]
and of Beaumont and Pierce that the additive group of
every torsion-free finite-rank E-ring is q.d.

Question [A.V. Tsarev]. Is it true that the additive
group of every E-ring of finite rank >1 is q.d.?

Proposition 22 [BSch, 1977]. E-rings of rank 0 are
exactly the rings Z/nZ, where n ∈ N (up to isomorphism).

Theorem 23 [Ts, 2017]. E-rings of rank 1 are exactly the
rings Rχ (up to isomorphism).
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E-ring of rank 2 whose additive group is not q.d.

Q(L) is the subring of Q generated by all 1
p
, where p ∈ L.

Example 24. Let L ⊂ P and P \ L be infinite and

K =
∏
p∈L

Z/p2Z, T =
⊕
p∈L

Z/p2Z ⊂ K,

b = (p+ p2Z)p∈L ∈ K. Denote

R = (1 + T )Q(L) ⊕ (b+ T )Y ⊂ K/T,

where Q(L) ⊂ Y ⊂ Q and the type t(Y ) is nonidempotent.

The ring R ⊂ K defined by R/T = R is a mixed E-ring of
rank 2 whose additive group is not q.d.

Remark. R = R/T is not an E-ring.
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Definition. A group G with T (G) reduced is generalized
quotient divisible if it is an extension of a free group by a
divisible torsion group.

Proposition 25. For a generalized E-ring R of rank >1,
the following are equivalent:
1) The additive group of R is a generalized q.d. group.
2) The additive group of R/T (R) is a generalized q.d.
group.

By the result of J.D. Reid [1962], we obtain the following:
Corollary 26. The additive group of any generalized
E-ring of infinite rank is a generalized q.d. group.

Remark. Corollary 26 can be also deduced from the result
of Tsarev [2021].
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For a commutative ring R, the ideal of all nilpotent
elements of R is denoted by N(R).

Theorem 27. For an E-ring R of finite rank >1, the
following are equivalent:
1) The additive group of R is a q.d. group.
2) The additive group of R/T (R) is a q.d. group.
3) The additive group of N

(
R/T (R)

)
is a q.d. group.

Theorem 28. For a torsion-free group G of finite rank, the
following are equivalent:
1) There is a finite-rank E-ring R such that G is
isomorphic to the additive group of N

(
R/T (R)

)
.

2) The set
{
p ∈ P

∣∣ pG = G
}
is infinite.

It follows from Theorems 27 and 28 that there is a sufficient
supply of E-rings whose additive groups are not q.d.
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p-components of E-rings

Let R be an E-ring and Rp be its p-components.

Theorem 29 [Sch, 1973]. All Rp’s are cyclic groups.

Theorem 30.
If R has finite rank and its additive group is not q.d., then
a) N(R) is a mixed group with infinite torsion part;
b) the set

{
p ∈ P

∣∣ p2 6 |Rp|
}
is infinite.

Theorem 31 [Sch, 1973]. Let p ∈ P .
a) There is a unique R′p such that R = Rp ⊕R′p.
b) R′p is an ideal of R and an E-ring.
c) If Rp 6= 0, then pR′p = R′p.
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E-ring as an extension of an L-divisible ideal

For any r ∈ R and p ∈ L, where L =
{
p ∈ P

∣∣ Rp 6= 0
}
, we

can write r = rp + r′p with rp ∈ Rp and r′p ∈ R′p.

Define ξ : R→
∏
p∈L

Rp by putting ξ(r) = (rp)p∈L.

Theorem 32 [Sch, 1973].

a) ξ(R) is an E-ring such that
⊕
p∈L

Rp ⊂ ξ(R) ⊂
∏
p∈L

Rp.

b) ker ξ is the (torsion-free) ideal A =
⋂
p∈L

⋂
n∈N

pnR.

Theorem 33 [Ts, 2017].
If R has a finite rank, then

(
N(R) ∩ A

)2
= 0.

Theorem 34. If R has a finite rank, then N(R) · A = 0.
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Example 35 [BSch, 1977].

Let L = P \ {2, 3} and χ = (∞2, 03, 15, 17, . . .); then⊕
p>3

Z/pZ ⊂ Rχ ⊂
∏
p>3

Z/pZ

and |Rχ/2Rχ| = 2 = |Q(L)/2Q(L)|.

If we put R =
{

(a, b) ∈ Q(L) ⊕Rχ
∣∣ ϕ(a+Q(L)) = b+Rχ

}
,

where Q(L)/2Q(L)
ϕ∼= Rχ/2Rχ, then R is an E-ring of rank 2.

For this ring we have ξ(R) ∼= Rχ and A = ker ξ = 2Q(L)⊕ 0.

Thus the exact sequence 0→ A→ R→ ξ(R)→ 0 does not
split.

On the other hand, R is quasi-isomorphic to Q(L) ⊕ ξ(R).
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Problem [BSch, 1977]. Is it true that every mixed
E-ring R is quasi-isomorphic to a direct sum of ξ(R) and a
torsion-free E-ring containing the ideal A = ker ξ?

It follows from the results of Tsarev [2017] that the answer
is positive if R has rank 62.

We construct an E-ring R of rank 3 with the following
properties:
• R ⊂ Q×

∏
p∈L

Z/p2Z;

• R is a counterexample to the conjecture of Bowshell and
Schultz;
• the additive group of R is not q.d.;
• the additive group of the ring ξ(R) ∼= R/A is q.d.
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Example 36. Let L ⊂ P and P \ L be infinite and

K =
∏
p∈L

Z/p2Z, T =
⊕
p∈L

Z/p2Z ⊂ K, k = k + T.

Choose x, y ∈ K such that x2 = y2 = xy = 0 and 1, x, y are
independent.
We consider the ring 1Q(L) ⊕ xQ︸ ︷︷ ︸

U

⊕ yQ︸︷︷︸
I

⊂ K/T.

Define U ⊂ K by U/T = U . For a group H ⊂ Q⊕Q, let

Λ =
{

1 · q + x · a+ y · b
∣∣ q ∈ Q(L) and (a, b) ∈ H

}
⊂ U ⊕ I.

Then R =

{(
u z
0 u

) ∣∣∣∣ u ∈ U , z ∈ I and u+ z ∈ Λ

}
is the

desired E-ring with A ⊂
(

0 I
0 0

)
(for a suitable H).
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