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A torsion-free group G is quotient divisible (or simply q.d.)
if there is a finite-rank free subgroup F' C G such that G/F
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Theorem 1 [BP, 1961]. The following are equivalent:
1) G is a q.d. group.

2) There is a finite-rank free subgroup F' C G such that
G/ F is a divisible torsion group.

In 1998 Fomin and Wickless extended this definition to
arbitrary Abelian groups.
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Definition [A. A. Fomin, W. Wickless, 1998].
Let n > 0. A group G is a q.d. group of rank n if its torsion
part T'(G) is reduced and there is a free subgroup F' C G of
rank n such that G/F is a divisible torsion group.

Every such subgroup F' is a fundamental subgroup of G,
and any free basis of a fundamental subgroup F'is a
fundamental system of elements of G.

In 2007 Davydova described all q.d. groups of rank 1.

Let P be the set of all primes.
Theorem 2 [O.I. Davydova, 2007].

a) For any characteristic x = (n,),p, the additive group of
RX is a q.d. group of rank 1 with fundamental subgroup (1).

b) Any q.d. group of rank 1 is isomorphic to the additive
group of some RX.
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Rings RX

X = (n,),ep With n, € NU {0, c0};
L:{pEP‘O<np<oo};

KX =[] z/p>z;

peEL

QX is the subring of the field Q generated by the elements
% such that n, < oo.

If L is a finite set, then RX = QX x KX.

If L is infinite, then RX is the ring of all elements

b= (b,),er, € KX such that for some fraction 3 € QX the
equality ue, = vb, (where e, is the identity of the ring
Z/p"™7Z) holds for almost all p € L.
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Torsion-free finite-rank groups and q.d. groups

Theorem 3 [FW, 1998|.

The category of torsion-free finite-rank groups (with
quasi-homomorphisms as morphisms) is dual to the
category of q.d. groups (with quasi-homomorphisms as
morphisms).

A quasi-homomorphism is an element of the group
Q ® Hom(A, B).

Two groups (rings) A and B are quasi-isomorphic if there
exist subgroups (subrings) A’ C A and B’ C B such that
nA C A', nB C B’ (for some n € N) and A’ = B'.
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Definition. For p € P, the p-rank of GG is the dimension of
G /pG as a vector space over Z/pZ [notation: 7,(G)].

Proposition 4. Let G be a q.d. group. Then

a) every fundamental system of G contains at least r,(G)
elements which are not in pG;

b) every fundamental subgroup of G has a free basis with
exactly r,(G) elements which are not in pG'.

Theorem 5. Let G be a q.d. group of rank n and F be a
fundamental subgroup of G. Then

GIF =P P zv™),

pEP n—ny

where n, = r,(G/T(G)).
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Let G be a torsion-free group of rank n and g¢,, g,,...,9, be
a system of independent elements.

It is known that the type t(g;) At(gy) A ... At(g,) does not
depend on the choice of g;, g,,...,9,.

This type is denoted by it(G) [the inner type of G].

Proposition 6. If G is a torsion-free q.d. group, then the
type it(G) is idempotent.

Definition. Let H be a group with T'(H) reduced and F
be a finite-rank free subgroup of H.

The sum of all q.d. subgroups G C H such that F'is a
fundamental subgroup of G is called the quotient divisible
hull of F'in H.

Theorem 7. The q.d. hull of F in H is the largest q.d.
subgroup of H that has F' as its fundamental subgroup.
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Theorem 8. Let F' be a finite-rank free subgroup of H.
The following are equivalent:

1) H is a q.d. group which has F' as its fundamental
subgroup.

2) H is the union of a chain of q.d. subgroups

G, CGy,C...G, C ... which have F' as their fundamental
subgroup.

3) H is the union of a chain of q.d. subgroups

G, CG,C...G, C ... which have F' as their fundamental
subgroup and have finite torsion parts.

Theorem 9 [A. A. Fomin].
The class of q.d. groups is closed under extensions.

Theorem 10. For any q.d. group H, there is a chain of
subgroups 0 = G, C G, C G, C ... C G, = H such that all
G,,1/G; are q.d. groups of rank 1.
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Quotient divisible groups of rank two

For any isomorphism ¢: A/A, — B/B,, we can consider
the group {(a,b) € A® B | p(a+ Ay) = b+ By}

Any torsion-free group G of rank 2 can be embedded in
Q @ Q, so G has a representation of the following form:

G=H={(a,b) e A® B | pla+Ay) =b+ By}
0#£A, CACQ, 0£B,CBcCQ, A/A = B/B,).

Such a representation is said to be

e good if the types t(A), t(B) and t(A4,) A t(B,) are
idempotent;

e very good if it is good and the group A/A, = B/B, is
divisible.

(1)
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Theorem 11. For a torsion-free group G of rank 2, the
following are equivalent:

1) G is a q.d. group.

2) G has a good representation of the form (1).

3) G has a very good representation of the form (1).

4) Every representation of G of the form (1) is good.

5) The type it(G) is idempotent, and every rank-1
torsion-free homomorphic image of G has an idempotent
type.

Example 12. There is a torsion-free q.d. group G of

rank 2 such that the type t(z) is nonidempotent for every
z e G\ {0}.

Remark. In particular, G can not be endowed with a ring
structure.
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Example 13. Let L = {p epP ‘ p =4k + 1} and
K =]]z/pz.
peL
If G is the pure hull of {1,b} in K, where v> = —1, then
e (5 is a mixed q.d. group of rank 2;

e ( does not have a representation of the form (1) such
that A and B are q.d. groups of rank 1.

Definition. A q.d. group G is p-minimal if G/F = Z(p™)
for every fundamental subgroup F' of G.

Remark. A torsion-free q.d. group G of rank n is
p-minimal if and only if 7,(G) =n — 1 and r,(G) = n for all
q € P\{p}.

For some results concerning torsion-free p-minimal q.d.
groups and their endomorphism rings see [Fomin, 1984].
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Torsion-free p-minimal q.d. groups of rank 2

J,, is the ring of p-adic integers;

U(J,) is the multiplicative group of J ;

Q™ is the subring of Q generated by %.

Theorem 14. For a group G, the following are equivalent:
1) G is a torsion-free p-minimal q.d. group of rank 2.

2) There isn € U(J,) such that G = H,, where
H,={(a,b) € QP & Q" | n(a+Z) =b+Z}.
Theorem 15. For n € U(J,), the following are equivalent:

1) n is rational.
2) H, is a completely decomposable group.
3) H,~Q¥ & 7.

Proposition 16. If a number n € U(J,) is not rational,

then all rank-1 subgroups of H, are isomorphic to Z.
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Proposition 17. If a number n € U(J,) is not rational,

then H, is isomorphic to the p-pure hull of {1,n} in J,.

Theorem 18. For n,¢ € U(J,), the following are
equivalent:

1) H, = H..

c+dn

2) There are a,b,c,d € Z such that ( =
a+ bn

ad —be € {£1,+p, £p% .. .}.

and

Example 19. Choose 1 € U(.J,) which is not a root of any
quadratic polynomial from Z[x] and a prime q # p.
By Theorem 18, we have H, 2 H, .

On the other hand, there exist monomorphisms H, — H,,
and H, — H,.
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E-rings

Definition [P. Schultz, 1973|. A ring R is an E-ring if
every endomorphism of R* (the additive group of R) is a
left multiplication A, by some r € R.

(In this case the correspondence r — A is a ring
isomorphism R — End R™.)

Every E-ring is a commutative ring with identity.

Definition. A ring R is a generalized E-ring if
R=EndR*.

Theorem 20 [R. Goébel, S. Shelah, L. Striingmann,
2004].
There are generalized E-rings which are not E-rings.
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By the rank of R we mean the torsion-free rank of RT.

Proposition 21. Finite-rank generalized E-rings are
E-rings.

It follows from the results of Bowshell and Schultz [1977]
and of Beaumont and Pierce that the additive group of
every torsion-free finite-rank F-ring is q.d.

Question [A.V. Tsarev]. Is it true that the additive
group of every E-ring of finite rank >1 is q.d.?

Proposition 22 [BSch, 1977|. E-rings of rank 0 are
exactly the rings Z/nZ, where n € N (up to isomorphism).

Theorem 23 [Ts, 2017]. E-rings of rank 1 are exactly the
rings RX (up to isomorphism).
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Example 24. Let L C P and P \ L be infinite and

K=][zwz. T=z/’ZCK

pEL peL
b= (p+p*Z),ecr € K. Denote
R=01+T7)Q" e (b+T)Y C K/T,

where Q1Y) ¢ Y € Q and the type t(Y) is nonidempotent.

The ring R C K defined by R/T = R is a mixed E-ring of
rank 2 whose additive group is not q.d.

Remark. R = R/T is not an E-ring.
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Definition. A group G with T'(G) reduced is generalized
quotient divisible if it is an extension of a free group by a
divisible torsion group.

Proposition 25. For a generalized E-ring R of rank > 1,
the following are equivalent:

1) The additive group of R is a generalized q.d. group.
2) The additive group of R/T(R) is a generalized q.d.
group.

By the result of J.D. Reid [1962], we obtain the following;:

Corollary 26. The additive group of any generalized
E-ring of infinite rank is a generalized q.d. group.

Remark. Corollary 26 can be also deduced from the result
of Tsarev [2021].
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For a commutative ring R, the ideal of all nilpotent
elements of R is denoted by N(R).

Theorem 27. For an E-ring R of finite rank >1, the
following are equivalent:

1) The additive group of R is a q.d. group.
2) The additive group of R/T(R) is a q.d. group.
3) The additive group of N(R/T(R)) is a q.d. group.

Theorem 28. For a torsion-free group G of finite rank, the
following are equivalent:

1) There is a finite-rank E-ring R such that G is
isomorphic to the additive group of N(R/T(R)).
2) The set {p epP ‘ pG = G} is infinite.

It follows from Theorems 27 and 28 that there is a sufficient
supply of E-rings whose additive groups are not q.d.
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p-components of E-rings

Let R be an E-ring and R, be its p-components.
Theorem 29 [Sch, 1973]. All R,’s are cyclic groups.

Theorem 30.

If R has finite rank and its additive group is not q.d., then
a) N(R) is a mixed group with infinite torsion part;

b) the set {p € P | p* < |R,|} is infinite.

Theorem 31 [Sch, 1973]. Let p € P.

a) There is a unique R, such that R =R, ® R,
b) R, is an ideal of R and an E-ring.

c) If R, # 0, then pR, = R,
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E-ring as an extension of an L-divisible ideal

ForanyreRandpeL,WhereL:{pGP‘RP#O},we
can write r =1, + 7“; with r, € R, and r; € R;.

Define £: R — | | R, by putting &£(r) = (r :
p p/peL

peL

Theorem 32 [Sch, 1973].
a) £(R) is an E-ring such that @R C&(R) C H R,

peEL peEL
b) ker ¢ is the (torsion-free) ideal A = ﬂ m p"R.
peL neN
Theorem 33 [Ts, 2017].
If R has a finite rank, then (N(R) N A)2 = 0.

Theorem 34. If R has a finite rank, then N(R) - A = 0.
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Example 35 [BSch, 1977].
Let L = P\ {2,3} and x = (004,03, 15, 15,...); then

B z/vz c R¥ c [[z/pZ

p>3 p>3
and |RX/2RX| = 2 = |Q) /2Q7).

If we put R = {(a,b) € QW) @ Rx ‘ ola+ QW) =b+ RX},
where Q) /2Q(") < RX/2RX, then R is an E-ring of rank 2.

For this ring we have ¢(R) =2 RX and A = ker & = 2Q") @ 0.

Thus the exact sequence 0 - A — R — {(R) — 0 does not
split.

On the other hand, R is quasi-isomorphic to Q¥ @ £(R).
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Problem [BSch, 1977]. Is it true that every mixed
E-ring R is quasi-isomorphic to a direct sum of {(R) and a
torsion-free F-ring containing the ideal A = ker £?

It follows from the results of Tsarev [2017| that the answer
is positive if R has rank <2.

We construct an E-ring R of rank 3 with the following
properties:
e RCQx HZ/p2Z;

peL
e R is a counterexample to the conjecture of Bowshell and
Schultz;

e the additive group of R is not q.d.;
e the additive group of the ring {(R) = R/A is q.d.
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Example 36. Let L C P and P \ L be infinite and
K=][z/wz. T=EPZ/pZcK, k=k+T
peL peL

Choose x,y € K such that 22 = 4> = 2y = 0 and 1, z, y are

independent.

We consider the ring IQY @7Q @ 7Q c K/T.
—_———— W~

U T
Define U ¢ K by U/T = U. For a group H C Q ® Q, let

A={T-q+7-a+7:0|qeQ® and (a,b) e H} cUST.

ThenRz{(“ Z)
0 wu

desired E-ring with A C (

uEU,zETandﬂ+z€K} is the

0 1 :
0 O) (for a suitable H).
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