Факторно делимые абелевы группы, *Е*-кольца и связи между ними

Е.А. Тимошенко, М.Н. Зонов

Томский государственный университет

Декабрьские чтения — 2021

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition [R. A. Beaumont, R. S. Pierce, 1961].

Definition [R. A. Beaumont, R. S. Pierce, 1961]. A torsion-free group G is quotient divisible (or simply q.d.) if there is a finite-rank free subgroup $F \subset G$ such that G/F is a direct sum of a divisible torsion group and a bounded group.

うして ふゆう ふほう ふほう ふしつ

Definition [R. A. Beaumont, R. S. Pierce, 1961]. A torsion-free group G is quotient divisible (or simply q.d.) if there is a finite-rank free subgroup $F \subset G$ such that G/F is a direct sum of a divisible torsion group and a bounded group.

Theorem 1 [BP, 1961]. The following are equivalent:

- 1) G is a q.d. group.
- 2) There is a finite-rank free subgroup $F \subset G$ such that G/F is a divisible torsion group.

Definition [R. A. Beaumont, R. S. Pierce, 1961]. A torsion-free group G is quotient divisible (or simply q.d.) if there is a finite-rank free subgroup $F \subset G$ such that G/F is a direct sum of a divisible torsion group and a bounded group.

Theorem 1 [BP, 1961]. The following are equivalent:

- 1) G is a q.d. group.
- 2) There is a finite-rank free subgroup $F \subset G$ such that G/F is a divisible torsion group.

In 1998 Fomin and Wickless extended this definition to arbitrary Abelian groups.

Definition [A. A. Fomin, W. Wickless, 1998].

Let $n \ge 0$. A group G is a q.d. group of rank n if its torsion part T(G) is reduced and there is a free subgroup $F \subset G$ of rank n such that G/F is a divisible torsion group.

Every such subgroup F is a fundamental subgroup of G, and any free basis of a fundamental subgroup F is a fundamental system of elements of G.

Definition [A. A. Fomin, W. Wickless, 1998]. Let $n \ge 0$. A group *G* is a *q.d. group of rank n* if its torsion part T(G) is reduced and there is a free subgroup $F \subset G$ of rank *n* such that G/F is a divisible torsion group.

Every such subgroup F is a fundamental subgroup of G, and any free basis of a fundamental subgroup F is a fundamental system of elements of G.

In 2007 Davydova described all q.d. groups of rank 1.

Definition [A. A. Fomin, W. Wickless, 1998]. Let $n \ge 0$. A group *G* is a *q.d. group of rank n* if its torsion part T(G) is reduced and there is a free subgroup $F \subset G$ of rank *n* such that G/F is a divisible torsion group.

Every such subgroup F is a fundamental subgroup of G, and any free basis of a fundamental subgroup F is a fundamental system of elements of G.

In 2007 Davydova described all q.d. groups of rank 1.

Let P be the set of all primes.

Definition [A. A. Fomin, W. Wickless, 1998]. Let $n \ge 0$. A group G is a q.d. group of rank n if its torsion part T(G) is reduced and there is a free subgroup $F \subset G$ of rank n such that G/F is a divisible torsion group. Every such subgroup F is a fundamental subgroup of G, and any free basis of a fundamental subgroup F is a

and any free basis of a fundamental subgroup F is a fundamental system of elements of G.

In 2007 Davydova described all q.d. groups of rank 1.

Let P be the set of all primes.

Theorem 2 [O. I. Davydova, 2007].

a) For any characteristic $\chi = (n_p)_{p \in P}$, the additive group of R^{χ} is a q.d. group of rank 1 with fundamental subgroup $\langle 1 \rangle$.

Definition [A. A. Fomin, W. Wickless, 1998]. Let $n \ge 0$. A group G is a q.d. group of rank n if its torsion part T(G) is reduced and there is a free subgroup $F \subset G$ of rank n such that G/F is a divisible torsion group. Every such subgroup F is a fundamental subgroup of G,

and any free basis of a fundamental subgroup F is a fundamental system of elements of G.

In 2007 Davydova described all q.d. groups of rank 1.

Let P be the set of all primes.

Theorem 2 [O. I. Davydova, 2007].

a) For any characteristic $\chi = (n_p)_{p \in P}$, the additive group of R^{χ} is a q.d. group of rank 1 with fundamental subgroup $\langle 1 \rangle$. b) Any q.d. group of rank 1 is isomorphic to the additive group of some R^{χ} .

$$\begin{split} \chi &= (n_p)_{p \in P} \text{ with } n_p \in \mathbb{N} \cup \{0, \infty\};\\ L &= \left\{ p \in P \mid 0 < n_p < \infty \right\};\\ K^{\chi} &= \prod_{p \in L} \mathbb{Z}/p^{n_p}\mathbb{Z}; \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\begin{split} \chi &= (n_p)_{p \in P} \text{ with } n_p \in \mathbb{N} \cup \{0, \infty\};\\ L &= \left\{ p \in P \mid 0 < n_p < \infty \right\};\\ K^{\chi} &= \prod_{p \in L} \mathbb{Z}/p^{n_p}\mathbb{Z}; \end{split}$$

 \mathbb{Q}^{χ} is the subring of the field \mathbb{Q} generated by the elements $\frac{1}{p}$ such that $n_p < \infty$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$\begin{split} \chi &= (n_p)_{p \in P} \text{ with } n_p \in \mathbb{N} \cup \{0, \infty\};\\ L &= \left\{ p \in P \mid 0 < n_p < \infty \right\};\\ K^{\chi} &= \prod_{p \in L} \mathbb{Z}/p^{n_p}\mathbb{Z}; \end{split}$$

 \mathbb{Q}^{χ} is the subring of the field \mathbb{Q} generated by the elements $\frac{1}{p}$ such that $n_p < \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

If L is a finite set, then $R^{\chi} = \mathbb{Q}^{\chi} \times K^{\chi}$.

$$\begin{split} \chi &= (n_p)_{p \in P} \text{ with } n_p \in \mathbb{N} \cup \{0, \infty\};\\ L &= \left\{ p \in P \mid 0 < n_p < \infty \right\};\\ K^{\chi} &= \prod_{p \in L} \mathbb{Z}/p^{n_p}\mathbb{Z}; \end{split}$$

 \mathbb{Q}^{χ} is the subring of the field \mathbb{Q} generated by the elements $\frac{1}{p}$ such that $n_p < \infty$.

If L is a finite set, then $R^{\chi} = \mathbb{Q}^{\chi} \times K^{\chi}$.

If L is infinite, then R^{χ} is the ring of all elements $b = (b_p)_{p \in L} \in K^{\chi}$ such that for some fraction $\frac{u}{v} \in \mathbb{Q}^{\chi}$ the equality $ue_p = vb_p$ (where e_p is the identity of the ring $\mathbb{Z}/p^{n_p}\mathbb{Z}$) holds for almost all $p \in L$.

Torsion-free finite-rank groups and q.d. groups

Torsion-free finite-rank groups and q.d. groups

Theorem 3 [FW, 1998].

The category of torsion-free finite-rank groups (with quasi-homomorphisms as morphisms) is dual to the category of q.d. groups (with quasi-homomorphisms as morphisms).

うして ふゆう ふほう ふほう ふしつ

Torsion-free finite-rank groups and q.d. groups

Theorem 3 [FW, 1998].

The category of torsion-free finite-rank groups (with quasi-homomorphisms as morphisms) is dual to the category of q.d. groups (with quasi-homomorphisms as morphisms).

A quasi-homomorphism is an element of the group $\mathbb{Q} \otimes \operatorname{Hom}(A, B)$.

Two groups (rings) A and B are quasi-isomorphic if there exist subgroups (subrings) $A' \subset A$ and $B' \subset B$ such that $nA \subset A', nB \subset B'$ (for some $n \in \mathbb{N}$) and $A' \cong B'$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Proposition 4. Let G be a q.d. group. Then a) every fundamental system of G contains at least $r_p(G)$ elements which are not in pG;

ション ふゆ マ キャット しょう くしゃ

Proposition 4. Let G be a q.d. group. Then

a) every fundamental system of G contains at least $r_p(G)$ elements which are not in pG;

b) every fundamental subgroup of G has a free basis with exactly $r_p(G)$ elements which are not in pG.

Proposition 4. Let G be a q.d. group. Then

a) every fundamental system of G contains at least $r_p(G)$ elements which are not in pG;

b) every fundamental subgroup of G has a free basis with exactly $r_p(G)$ elements which are not in pG.

Theorem 5. Let G be a q.d. group of rank n and F be a fundamental subgroup of G. Then

$$G/F \cong \bigoplus_{p \in P} \bigoplus_{n-n_p} \mathbb{Z}(p^{\infty}),$$

where $n_p = r_p(G/T(G))$.

It is known that the type $\mathbf{t}(g_1) \wedge \mathbf{t}(g_2) \wedge \ldots \wedge \mathbf{t}(g_n)$ does not depend on the choice of g_1, g_2, \ldots, g_n .

うして ふゆう ふほう ふほう ふしつ

It is known that the type $\mathbf{t}(g_1) \wedge \mathbf{t}(g_2) \wedge \ldots \wedge \mathbf{t}(g_n)$ does not depend on the choice of g_1, g_2, \ldots, g_n .

うして ふゆう ふほう ふほう ふしつ

This type is denoted by it(G) [the inner type of G].

It is known that the type $\mathbf{t}(g_1) \wedge \mathbf{t}(g_2) \wedge \ldots \wedge \mathbf{t}(g_n)$ does not depend on the choice of g_1, g_2, \ldots, g_n .

This type is denoted by it(G) [the inner type of G].

Proposition 6. If G is a torsion-free q.d. group, then the type it(G) is idempotent.

It is known that the type $\mathbf{t}(g_1) \wedge \mathbf{t}(g_2) \wedge \ldots \wedge \mathbf{t}(g_n)$ does not depend on the choice of g_1, g_2, \ldots, g_n .

This type is denoted by it(G) [the inner type of G].

Proposition 6. If G is a torsion-free q.d. group, then the type it(G) is idempotent.

Definition. Let H be a group with T(H) reduced and F be a finite-rank free subgroup of H. The sum of all q.d. subgroups $G \subset H$ such that F is a fundamental subgroup of G is called the *quotient divisible* hull of F in H.

It is known that the type $\mathbf{t}(g_1) \wedge \mathbf{t}(g_2) \wedge \ldots \wedge \mathbf{t}(g_n)$ does not depend on the choice of g_1, g_2, \ldots, g_n .

This type is denoted by it(G) [the inner type of G].

Proposition 6. If G is a torsion-free q.d. group, then the type it(G) is idempotent.

Definition. Let H be a group with T(H) reduced and F be a finite-rank free subgroup of H. The sum of all q.d. subgroups $G \subset H$ such that F is a fundamental subgroup of G is called the *quotient divisible* hull of F in H.

Theorem 7. The q.d. hull of F in H is the largest q.d. subgroup of H that has F as its fundamental subgroup.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

1) H is a q.d. group which has F as its fundamental subgroup.

2) *H* is the union of a chain of q.d. subgroups $G_1 \subset G_2 \subset \ldots G_n \subset \ldots$ which have *F* as their fundamental subgroup.

3) *H* is the union of a chain of q.d. subgroups $G_1 \subset G_2 \subset \ldots G_n \subset \ldots$ which have *F* as their fundamental subgroup and have finite torsion parts.

1) H is a q.d. group which has F as its fundamental subgroup.

2) *H* is the union of a chain of q.d. subgroups $G_1 \subset G_2 \subset \ldots G_n \subset \ldots$ which have *F* as their fundamental subgroup.

3) *H* is the union of a chain of q.d. subgroups $G_1 \subset G_2 \subset \ldots G_n \subset \ldots$ which have *F* as their fundamental subgroup and have finite torsion parts.

Theorem 9 [A. A. Fomin]. The class of q.d. groups is closed under extensions.

1) H is a q.d. group which has F as its fundamental subgroup.

2) *H* is the union of a chain of q.d. subgroups $G_1 \subset G_2 \subset \ldots G_n \subset \ldots$ which have *F* as their fundamental subgroup.

3) *H* is the union of a chain of q.d. subgroups $G_1 \subset G_2 \subset \ldots G_n \subset \ldots$ which have *F* as their fundamental subgroup and have finite torsion parts.

Theorem 9 [A. A. Fomin].

The class of q.d. groups is closed under extensions.

Theorem 10. For any q.d. group H, there is a chain of subgroups $0 = G_0 \subset G_1 \subset G_2 \subset \ldots \subset G_n = H$ such that all G_{i+1}/G_i are q.d. groups of rank 1.

For any isomorphism $\varphi \colon A/A_0 \to B/B_0$, we can consider the group $\{(a,b) \in A \oplus B \mid \varphi(a+A_0) = b+B_0\}$.

For any isomorphism $\varphi \colon A/A_0 \to B/B_0$, we can consider the group $\{(a,b) \in A \oplus B \mid \varphi(a+A_0) = b+B_0\}$.

Any torsion-free group G of rank 2 can be embedded in $\mathbb{Q} \oplus \mathbb{Q}$, so G has a representation of the following form:

For any isomorphism $\varphi \colon A/A_0 \to B/B_0$, we can consider the group $\{(a,b) \in A \oplus B \mid \varphi(a+A_0) = b+B_0\}$.

Any torsion-free group G of rank 2 can be embedded in $\mathbb{Q} \oplus \mathbb{Q}$, so G has a representation of the following form:

$$G \cong H = \left\{ (a,b) \in A \oplus B \mid \varphi(a+A_0) = b + B_0 \right\}$$

$$(0 \neq A_0 \subset A \subset \mathbb{Q}, \quad 0 \neq B_0 \subset B \subset \mathbb{Q}, \quad A/A_0 \stackrel{\varphi}{\cong} B/B_0).$$
(1)

For any isomorphism $\varphi \colon A/A_0 \to B/B_0$, we can consider the group $\{(a,b) \in A \oplus B \mid \varphi(a+A_0) = b+B_0\}$.

Any torsion-free group G of rank 2 can be embedded in $\mathbb{Q} \oplus \mathbb{Q}$, so G has a representation of the following form:

$$G \cong H = \left\{ (a,b) \in A \oplus B \mid \varphi(a+A_0) = b+B_0 \right\}$$

$$(0 \neq A_0 \subset A \subset \mathbb{Q}, \quad 0 \neq B_0 \subset B \subset \mathbb{Q}, \quad A/A_0 \stackrel{\varphi}{\cong} B/B_0).$$
 (1)

Such a representation is said to be

• good if the types $\mathbf{t}(A)$, $\mathbf{t}(B)$ and $\mathbf{t}(A_0) \wedge \mathbf{t}(B_0)$ are idempotent;

For any isomorphism $\varphi \colon A/A_0 \to B/B_0$, we can consider the group $\{(a,b) \in A \oplus B \mid \varphi(a+A_0) = b+B_0\}$.

Any torsion-free group G of rank 2 can be embedded in $\mathbb{Q} \oplus \mathbb{Q}$, so G has a representation of the following form:

$$G \cong H = \left\{ (a,b) \in A \oplus B \mid \varphi(a+A_0) = b+B_0 \right\}$$

$$(0 \neq A_0 \subset A \subset \mathbb{Q}, \quad 0 \neq B_0 \subset B \subset \mathbb{Q}, \quad A/A_0 \stackrel{\varphi}{\cong} B/B_0).$$
 (1)

Such a representation is said to be

• good if the types $\mathbf{t}(A)$, $\mathbf{t}(B)$ and $\mathbf{t}(A_0) \wedge \mathbf{t}(B_0)$ are idempotent;

• very good if it is good and the group $A/A_0 \cong B/B_0$ is divisible.

Theorem 11. For a torsion-free group G of rank 2, the following are equivalent:

- 1) G is a q.d. group.
- 2) G has a good representation of the form (1).
- 3) G has a very good representation of the form (1).
- 4) Every representation of G of the form (1) is good.
- 5) The type $\mathbf{it}(G)$ is idempotent, and every rank-1 torsion-free homomorphic image of G has an idempotent type.

ション ふゆ マ キャット マックシン

Theorem 11. For a torsion-free group G of rank 2, the following are equivalent:

- 1) G is a q.d. group.
- 2) G has a good representation of the form (1).
- 3) G has a very good representation of the form (1).
- 4) Every representation of G of the form (1) is good.
- 5) The type $\mathbf{it}(G)$ is idempotent, and every rank-1 torsion-free homomorphic image of G has an idempotent type.

Example 12. There is a torsion-free q.d. group G of rank 2 such that the type $\mathbf{t}(x)$ is nonidempotent for every $x \in G \setminus \{0\}$.

Theorem 11. For a torsion-free group G of rank 2, the following are equivalent:

- 1) G is a q.d. group.
- 2) G has a good representation of the form (1).
- 3) G has a very good representation of the form (1).
- 4) Every representation of G of the form (1) is good.
- 5) The type $\mathbf{it}(G)$ is idempotent, and every rank-1 torsion-free homomorphic image of G has an idempotent type.

Example 12. There is a torsion-free q.d. group G of rank 2 such that the type $\mathbf{t}(x)$ is nonidempotent for every $x \in G \setminus \{0\}$.

Remark. In particular, G can not be endowed with a ring structure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

If G is the pure hull of $\{1, b\}$ in K, where $b^2 = -1$, then

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

• G is a mixed q.d. group of rank 2;

If G is the pure hull of $\{1, b\}$ in K, where $b^2 = -1$, then

• G is a mixed q.d. group of rank 2;

• G does not have a representation of the form (1) such that A and B are q.d. groups of rank 1.

うして ふゆう ふほう ふほう ふしつ

If G is the pure hull of $\{1, b\}$ in K, where $b^2 = -1$, then

• G is a mixed q.d. group of rank 2;

• G does not have a representation of the form (1) such that A and B are q.d. groups of rank 1.

Definition. A q.d. group G is *p*-minimal if $G/F \cong \mathbb{Z}(p^{\infty})$ for every fundamental subgroup F of G.

If G is the pure hull of $\{1, b\}$ in K, where $b^2 = -1$, then

• G is a mixed q.d. group of rank 2;

• G does not have a representation of the form (1) such that A and B are q.d. groups of rank 1.

Definition. A q.d. group G is *p*-minimal if $G/F \cong \mathbb{Z}(p^{\infty})$ for every fundamental subgroup F of G.

Remark. A torsion-free q.d. group G of rank n is p-minimal if and only if $r_p(G) = n - 1$ and $r_q(G) = n$ for all $q \in P \setminus \{p\}$.

If G is the pure hull of $\{1, b\}$ in K, where $b^2 = -1$, then

• G is a mixed q.d. group of rank 2;

• G does not have a representation of the form (1) such that A and B are q.d. groups of rank 1.

Definition. A q.d. group G is *p*-minimal if $G/F \cong \mathbb{Z}(p^{\infty})$ for every fundamental subgroup F of G.

Remark. A torsion-free q.d. group G of rank n is p-minimal if and only if $r_p(G) = n - 1$ and $r_q(G) = n$ for all $q \in P \setminus \{p\}$.

For some results concerning torsion-free p-minimal q.d. groups and their endomorphism rings see [Fomin, 1984].

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

$$\begin{split} J_p \mbox{ is the ring of } p\mbox{-adic integers;} \\ U(J_p) \mbox{ is the multiplicative group of } J_p; \\ \mathbb{Q}^{(p)} \mbox{ is the subring of } \mathbb{Q} \mbox{ generated by } \frac{1}{p}. \end{split}$$

$$J_p$$
 is the ring of *p*-adic integers;

 $U(J_p)$ is the multiplicative group of J_p ;

 $\mathbb{Q}^{(p)}$ is the subring of \mathbb{Q} generated by $\frac{1}{p}$.

Theorem 14. For a group G, the following are equivalent: 1) G is a torsion-free *p*-minimal q.d. group of rank 2. 2) There is $\eta \in U(J_n)$ such that $G \cong H_n$, where

$$H_{\eta} = \left\{ (a, b) \in \mathbb{Q}^{(p)} \oplus \mathbb{Q}^{(p)} \mid \eta(a + \mathbb{Z}) = b + \mathbb{Z} \right\}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

$$J_p$$
 is the ring of *p*-adic integers;

 $U(J_p)$ is the multiplicative group of J_p ;

 $\mathbb{Q}^{(p)}$ is the subring of \mathbb{Q} generated by $\frac{1}{p}$.

Theorem 14. For a group G, the following are equivalent:

1) G is a torsion-free *p*-minimal q.d. group of rank 2.

2) There is $\eta \in U(J_p)$ such that $G \cong H_{\eta}$, where

$$H_{\eta} = \left\{ (a, b) \in \mathbb{Q}^{(p)} \oplus \mathbb{Q}^{(p)} \mid \eta(a + \mathbb{Z}) = b + \mathbb{Z} \right\}.$$

Theorem 15. For $\eta \in U(J_p)$, the following are equivalent: 1) η is rational.

- 2) H_{η} is a completely decomposable group.
- 3) $H_{\eta} \cong \mathbb{Q}^{(p)} \oplus \mathbb{Z}.$

$$J_p$$
 is the ring of *p*-adic integers;

 $U(J_p)$ is the multiplicative group of J_p ;

 $\mathbb{Q}^{(p)}$ is the subring of \mathbb{Q} generated by $\frac{1}{p}$.

Theorem 14. For a group G, the following are equivalent:

1) G is a torsion-free *p*-minimal q.d. group of rank 2.

2) There is $\eta \in U(J_p)$ such that $G \cong H_{\eta}$, where

$$H_{\eta} = \left\{ (a, b) \in \mathbb{Q}^{(p)} \oplus \mathbb{Q}^{(p)} \mid \eta(a + \mathbb{Z}) = b + \mathbb{Z} \right\}.$$

Theorem 15. For $\eta \in U(J_p)$, the following are equivalent: 1) η is rational.

2) H_{η} is a completely decomposable group.

3) $H_{\eta} \cong \mathbb{Q}^{(p)} \oplus \mathbb{Z}.$

Proposition 16. If a number $\eta \in U(J_p)$ is not rational, then all rank-1 subgroups of H_η are isomorphic to \mathbb{Z} .

・ロト ・四ト ・ヨト ・ヨト ・日・

Theorem 18. For $\eta, \zeta \in U(J_p)$, the following are equivalent:

1) $H_{\eta} \cong H_{\zeta}$. 2) There are $a, b, c, d \in \mathbb{Z}$ such that $\zeta = \frac{c + d\eta}{a + b\eta}$ and $ad - bc \in \{\pm 1, \pm p, \pm p^2, \ldots\}$.

うして ふゆう ふほう ふほう ふしつ

Theorem 18. For $\eta, \zeta \in U(J_p)$, the following are equivalent:

1) $H_{\eta} \cong H_{\zeta}$. 2) There are $a, b, c, d \in \mathbb{Z}$ such that $\zeta = \frac{c + d\eta}{a + b\eta}$ and $ad - bc \in \{\pm 1, \pm p, \pm p^2, \ldots\}$.

Example 19. Choose $\eta \in U(J_p)$ which is not a root of any quadratic polynomial from $\mathbb{Z}[x]$ and a prime $q \neq p$.

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem 18. For $\eta, \zeta \in U(J_p)$, the following are equivalent:

1) $H_{\eta} \cong H_{\zeta}$. 2) There are $a, b, c, d \in \mathbb{Z}$ such that $\zeta = \frac{c + d\eta}{a + b\eta}$ and $ad - bc \in \{\pm 1, \pm p, \pm p^2, \ldots\}$.

Example 19. Choose $\eta \in U(J_p)$ which is not a root of any quadratic polynomial from $\mathbb{Z}[x]$ and a prime $q \neq p$. By Theorem 18, we have $H_\eta \cong H_{q\eta}$.

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem 18. For $\eta, \zeta \in U(J_p)$, the following are equivalent:

1) $H_{\eta} \cong H_{\zeta}$. 2) There are $a, b, c, d \in \mathbb{Z}$ such that $\zeta = \frac{c + d\eta}{a + b\eta}$ and $ad - bc \in \{\pm 1, \pm p, \pm p^2, \ldots\}$.

Example 19. Choose $\eta \in U(J_p)$ which is not a root of any quadratic polynomial from $\mathbb{Z}[x]$ and a prime $q \neq p$. By Theorem 18, we have $H_{\eta} \ncong H_{q\eta}$. On the other hand, there exist monomorphisms $H_{\eta} \to H_{q\eta}$ and $H_{q\eta} \to H_{\eta}$.

Definition [P. Schultz, 1973]. A ring R is an E-ring if every endomorphism of R^+ (the additive group of R) is a left multiplication λ_r by some $r \in R$. (In this case the correspondence $r \mapsto \lambda_r$ is a ring isomorphism $R \to \text{End } R^+$.)

うして ふゆう ふほう ふほう ふしつ

Definition [P. Schultz, 1973]. A ring R is an E-ring if every endomorphism of R^+ (the additive group of R) is a left multiplication λ_r by some $r \in R$. (In this case the correspondence $r \mapsto \lambda_r$ is a ring isomorphism $R \to \text{End } R^+$.)

(日) (日) (日) (日) (日) (日) (日) (日)

Every E-ring is a commutative ring with identity.

Definition [P. Schultz, 1973]. A ring R is an E-ring if every endomorphism of R^+ (the additive group of R) is a left multiplication λ_r by some $r \in R$. (In this case the correspondence $r \mapsto \lambda_r$ is a ring isomorphism $R \to \text{End } R^+$.)

(日) (日) (日) (日) (日) (日) (日) (日)

Every *E*-ring is a commutative ring with identity.

Definition. A ring R is a generalized E-ring if $R \cong \text{End } R^+$.

Definition [P. Schultz, 1973]. A ring R is an E-ring if every endomorphism of R^+ (the additive group of R) is a left multiplication λ_r by some $r \in R$. (In this case the correspondence $r \mapsto \lambda_r$ is a ring isomorphism $R \to \text{End } R^+$.)

Every *E*-ring is a commutative ring with identity.

Definition. A ring R is a generalized E-ring if $R \cong \text{End } R^+$.

Theorem 20 [R. Göbel, S. Shelah, L. Strüngmann, 2004].

There are generalized E-rings which are not E-rings.

Proposition 21. Finite-rank generalized *E*-rings are *E*-rings.

・ロト ・ 日 ・ モー・ モー・ うへぐ

Proposition 21. Finite-rank generalized *E*-rings are *E*-rings.

It follows from the results of Bowshell and Schultz [1977] and of Beaumont and Pierce that the additive group of every torsion-free finite-rank *E*-ring is q.d.

うして ふゆう ふほう ふほう ふしつ

Proposition 21. Finite-rank generalized *E*-rings are *E*-rings.

It follows from the results of Bowshell and Schultz [1977] and of Beaumont and Pierce that the additive group of every torsion-free finite-rank *E*-ring is q.d.

Question [A. V. Tsarev]. Is it true that the additive group of every *E*-ring of finite rank ≥ 1 is q.d.?

(日) (日) (日) (日) (日) (日) (日) (日)

Proposition 21. Finite-rank generalized *E*-rings are *E*-rings.

It follows from the results of Bowshell and Schultz [1977] and of Beaumont and Pierce that the additive group of every torsion-free finite-rank *E*-ring is q.d.

Question [A. V. Tsarev]. Is it true that the additive group of every *E*-ring of finite rank ≥ 1 is q.d.?

Proposition 22 [BSch, 1977]. *E*-rings of rank 0 are exactly the rings $\mathbb{Z}/n\mathbb{Z}$, where $n \in \mathbb{N}$ (up to isomorphism).

Proposition 21. Finite-rank generalized *E*-rings are *E*-rings.

It follows from the results of Bowshell and Schultz [1977] and of Beaumont and Pierce that the additive group of every torsion-free finite-rank *E*-ring is q.d.

Question [A. V. Tsarev]. Is it true that the additive group of every *E*-ring of finite rank ≥ 1 is q.d.?

Proposition 22 [BSch, 1977]. *E*-rings of rank 0 are exactly the rings $\mathbb{Z}/n\mathbb{Z}$, where $n \in \mathbb{N}$ (up to isomorphism).

Theorem 23 [Ts, 2017]. *E*-rings of rank 1 are exactly the rings R^{χ} (up to isomorphism).

 $\mathbb{Q}^{(L)}$ is the subring of \mathbb{Q} generated by all $\frac{1}{p}$, where $p \in L$.

E-ring of rank 2 whose additive group is not q.d. $\mathbb{Q}^{(L)}$ is the subring of \mathbb{Q} generated by all $\frac{1}{p}$, where $p \in L$.

Example 24. Let $L \subset P$ and $P \setminus L$ be infinite and

$$K = \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z}, \qquad T = \bigoplus_{p \in L} \mathbb{Z}/p^2 \mathbb{Z} \subset K,$$

 $b = (p + p^2 \mathbb{Z})_{p \in L} \in K$. Denote

 $\mathbb{Q}^{(L)}$ is the subring of \mathbb{Q} generated by all $\frac{1}{p}$, where $p \in L$.

Example 24. Let $L \subset P$ and $P \setminus L$ be infinite and

$$K = \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z}, \qquad T = \bigoplus_{p \in L} \mathbb{Z}/p^2 \mathbb{Z} \subset K,$$

 $b = (p + p^2 \mathbb{Z})_{p \in L} \in K$. Denote $\overline{R} = (1 + T) \mathbb{Q}^{(L)} \oplus (b + T) Y \subset K/T$,

where $\mathbb{Q}^{(L)} \subset Y \subset \mathbb{Q}$ and the type $\mathbf{t}(Y)$ is nonidempotent.

 $\mathbb{Q}^{(L)}$ is the subring of \mathbb{Q} generated by all $\frac{1}{p}$, where $p \in L$.

Example 24. Let $L \subset P$ and $P \setminus L$ be infinite and

$$K = \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z}, \qquad T = \bigoplus_{p \in L} \mathbb{Z}/p^2 \mathbb{Z} \subset K,$$

 $b = (p + p^2 \mathbb{Z})_{p \in L} \in K$. Denote $\overline{R} = (1 + T) \mathbb{Q}^{(L)} \oplus (b + T) Y \subset K/T$,

where $\mathbb{Q}^{(L)} \subset Y \subset \mathbb{Q}$ and the type $\mathbf{t}(Y)$ is nonidempotent. The ring $R \subset K$ defined by $R/T = \overline{R}$ is a mixed *E*-ring of rank 2 whose additive group is not q.d.

 $\mathbb{Q}^{(L)}$ is the subring of \mathbb{Q} generated by all $\frac{1}{p}$, where $p \in L$.

Example 24. Let $L \subset P$ and $P \setminus L$ be infinite and

$$K = \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z}, \qquad T = \bigoplus_{p \in L} \mathbb{Z}/p^2 \mathbb{Z} \subset K,$$

 $b = (p + p^2 \mathbb{Z})_{p \in L} \in K$. Denote $\overline{R} = (1 + T) \mathbb{Q}^{(L)} \oplus (b + T) Y \subset K/T$,

where $\mathbb{Q}^{(L)} \subset Y \subset \mathbb{Q}$ and the type $\mathbf{t}(Y)$ is nonidempotent. The ring $R \subset K$ defined by $R/T = \overline{R}$ is a mixed *E*-ring of

The ring $R \subset K$ defined by R/T = R is a mixed *E*-ring of rank 2 whose additive group is not q.d.

Remark. $\overline{R} = R/T$ is not an *E*-ring.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

Proposition 25. For a generalized *E*-ring *R* of rank ≥ 1 , the following are equivalent:

ション ふゆ マ キャット マックシン

1) The additive group of R is a generalized q.d. group.

2) The additive group of R/T(R) is a generalized q.d. group.

Proposition 25. For a generalized *E*-ring *R* of rank ≥ 1 , the following are equivalent:

1) The additive group of R is a generalized q.d. group.

2) The additive group of R/T(R) is a generalized q.d. group.

By the result of J. D. Reid [1962], we obtain the following: **Corollary 26.** The additive group of any generalized E-ring of infinite rank is a generalized q.d. group.

Proposition 25. For a generalized *E*-ring *R* of rank ≥ 1 , the following are equivalent:

1) The additive group of R is a generalized q.d. group.

2) The additive group of R/T(R) is a generalized q.d. group.

By the result of J. D. Reid [1962], we obtain the following: **Corollary 26.** The additive group of any generalized E-ring of infinite rank is a generalized q.d. group.

Remark. Corollary 26 can be also deduced from the result of Tsarev [2021].

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem 27. For an *E*-ring *R* of finite rank ≥ 1 , the following are equivalent:

- 1) The additive group of R is a q.d. group.
- 2) The additive group of R/T(R) is a q.d. group.
- 3) The additive group of N(R/T(R)) is a q.d. group.

うして ふゆう ふほう ふほう ふしつ

Theorem 27. For an *E*-ring *R* of finite rank ≥ 1 , the following are equivalent:

- 1) The additive group of R is a q.d. group.
- 2) The additive group of R/T(R) is a q.d. group.
- 3) The additive group of N(R/T(R)) is a q.d. group.

Theorem 28. For a torsion-free group G of finite rank, the following are equivalent:

1) There is a finite-rank *E*-ring *R* such that *G* is isomorphic to the additive group of N(R/T(R)).

2) The set $\{p \in P \mid pG = G\}$ is infinite.

Theorem 27. For an *E*-ring *R* of finite rank ≥ 1 , the following are equivalent:

- 1) The additive group of R is a q.d. group.
- 2) The additive group of R/T(R) is a q.d. group.
- 3) The additive group of N(R/T(R)) is a q.d. group.

Theorem 28. For a torsion-free group G of finite rank, the following are equivalent:

1) There is a finite-rank *E*-ring *R* such that *G* is isomorphic to the additive group of N(R/T(R)).

2) The set $\{p \in P \mid pG = G\}$ is infinite.

It follows from Theorems 27 and 28 that there is a sufficient supply of *E*-rings whose additive groups are not q.d.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let R be an E-ring and R_p be its p-components.

Let R be an E-ring and R_p be its p-components.

Theorem 29 [Sch, 1973]. All R_p 's are cyclic groups.

Let R be an E-ring and R_p be its p-components.

Theorem 29 [Sch, 1973]. All R_p 's are cyclic groups.

Theorem 30.

If R has finite rank and its additive group is not q.d., then a) N(R) is a mixed group with infinite torsion part;

うして ふゆう ふほう ふほう ふしつ

Let R be an E-ring and R_p be its p-components.

Theorem 29 [Sch, 1973]. All R_p 's are cyclic groups.

Theorem 30.

If R has finite rank and its additive group is not q.d., then a) N(R) is a mixed group with infinite torsion part; b) the set $\{p \in P \mid p^2 \leq |R_p|\}$ is infinite.

Let R be an E-ring and R_p be its p-components.

Theorem 29 [Sch, 1973]. All R_p 's are cyclic groups.

Theorem 30.

If R has finite rank and its additive group is not q.d., then a) N(R) is a mixed group with infinite torsion part; b) the set $\{p \in P \mid p^2 \leq |R_p|\}$ is infinite.

Theorem 31 [Sch, 1973]. Let $p \in P$. a) There is a unique R'_p such that $R = R_p \oplus R'_p$. b) R'_p is an ideal of R and an E-ring. c) If $R_p \neq 0$, then $pR'_p = R'_p$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三副 - のへで

For any $r \in R$ and $p \in L$, where $L = \{p \in P \mid R_p \neq 0\}$, we can write $r = r_p + r'_p$ with $r_p \in R_p$ and $r'_p \in R'_p$.

For any $r \in R$ and $p \in L$, where $L = \{p \in P \mid R_p \neq 0\}$, we can write $r = r_p + r'_p$ with $r_p \in R_p$ and $r'_p \in R'_p$.

Define
$$\xi \colon R \to \prod_{p \in L} R_p$$
 by putting $\xi(r) = (r_p)_{p \in L}$.

For any $r \in R$ and $p \in L$, where $L = \{p \in P \mid R_p \neq 0\}$, we can write $r = r_p + r'_p$ with $r_p \in R_p$ and $r'_p \in R'_p$.

Define
$$\xi \colon R \to \prod_{p \in L} R_p$$
 by putting $\xi(r) = (r_p)_{p \in L}$.

Theorem 32 [Sch, 1973]. a) $\xi(R)$ is an *E*-ring such that $\bigoplus_{p \in L} R_p \subset \xi(R) \subset \prod_{p \in L} R_p$. b) ker ξ is the (torsion-free) ideal $A = \bigcap_{p \in L} \bigcap_{n \in \mathbb{N}} p^n R$.

うして ふゆう ふほう ふほう ふしつ

For any $r \in R$ and $p \in L$, where $L = \{p \in P \mid R_p \neq 0\}$, we can write $r = r_p + r'_p$ with $r_p \in R_p$ and $r'_p \in R'_p$.

Define
$$\xi \colon R \to \prod_{p \in L} R_p$$
 by putting $\xi(r) = (r_p)_{p \in L}$.

Theorem 32 [Sch, 1973]. a) $\xi(R)$ is an *E*-ring such that $\bigoplus_{p \in L} R_p \subset \xi(R) \subset \prod_{p \in L} R_p$. b) ker ξ is the (torsion-free) ideal $A = \bigcap_{p \in L} \bigcap_{n \in \mathbb{N}} p^n R$. **Theorem 33 [Ts, 2017].**

うして ふゆう ふほう ふほう ふしつ

If R has a finite rank, then $(N(R) \cap A)^2 = 0$.

For any $r \in R$ and $p \in L$, where $L = \{p \in P \mid R_p \neq 0\}$, we can write $r = r_p + r'_p$ with $r_p \in R_p$ and $r'_p \in R'_p$.

Define
$$\xi \colon R \to \prod_{p \in L} R_p$$
 by putting $\xi(r) = (r_p)_{p \in L}$.

Theorem 32 [Sch, 1973]. a) $\xi(R)$ is an *E*-ring such that $\bigoplus_{p \in L} R_p \subset \xi(R) \subset \prod_{p \in L} R_p$. b) ker ξ is the (torsion-free) ideal $A = \bigcap_{p \in L} \bigcap_{n \in \mathbb{N}} p^n R$. **Theorem 33 [Ts, 2017].**

If R has a finite rank, then $(N(R) \cap A)^2 = 0$.

Theorem 34. If R has a finite rank, then $N(R) \cdot A = 0$.

Example 35 [BSch, 1977].

p>3

ション ふゆ マ キャット マックシン

p>3

and $|R^{\chi}/2R^{\chi}| = 2 = |\mathbb{Q}^{(L)}/2\mathbb{Q}^{(L)}|.$

and $|R^{\chi}/2R^{\chi}| = 2 = |\mathbb{Q}^{(L)}/2\mathbb{Q}^{(L)}|.$

p>3

If we put $R = \{(a, b) \in \mathbb{Q}^{(L)} \oplus R^{\chi} \mid \varphi(a + \mathbb{Q}^{(L)}) = b + R^{\chi}\},\$ where $\mathbb{Q}^{(L)}/2\mathbb{Q}^{(L)} \stackrel{\varphi}{\cong} R^{\chi}/2R^{\chi}$, then R is an E-ring of rank 2.

n>3

and $|R^{\chi}/2R^{\chi}| = 2 = |\mathbb{Q}^{(L)}/2\mathbb{Q}^{(L)}|.$

p>3

If we put $R = \{(a, b) \in \mathbb{Q}^{(L)} \oplus R^{\chi} \mid \varphi(a + \mathbb{Q}^{(L)}) = b + R^{\chi}\},\$ where $\mathbb{Q}^{(L)}/2\mathbb{Q}^{(L)} \stackrel{\varphi}{\cong} R^{\chi}/2R^{\chi}$, then R is an E-ring of rank 2.

n>3

For this ring we have $\xi(R) \cong R^{\chi}$ and $A = \ker \xi = 2\mathbb{Q}^{(L)} \oplus 0$.

and $|R^{\chi}/2R^{\chi}| = 2 = |\mathbb{Q}^{(L)}/2\mathbb{Q}^{(L)}|.$

p>3

If we put $R = \{(a, b) \in \mathbb{Q}^{(L)} \oplus R^{\chi} \mid \varphi(a + \mathbb{Q}^{(L)}) = b + R^{\chi}\},\$ where $\mathbb{Q}^{(L)}/2\mathbb{Q}^{(L)} \stackrel{\varphi}{\cong} R^{\chi}/2R^{\chi}$, then R is an E-ring of rank 2.

p>3

For this ring we have $\xi(R) \cong R^{\chi}$ and $A = \ker \xi = 2\mathbb{Q}^{(L)} \oplus 0$.

Thus the exact sequence $0 \to A \to R \to \xi(R) \to 0$ does not split.

and $|R^{\chi}/2R^{\chi}| = 2 = |\mathbb{Q}^{(L)}/2\mathbb{Q}^{(L)}|.$

p>3

If we put $R = \{(a, b) \in \mathbb{Q}^{(L)} \oplus R^{\chi} \mid \varphi(a + \mathbb{Q}^{(L)}) = b + R^{\chi}\},\$ where $\mathbb{Q}^{(L)}/2\mathbb{Q}^{(L)} \stackrel{\varphi}{\cong} R^{\chi}/2R^{\chi}$, then R is an E-ring of rank 2.

p>3

For this ring we have $\xi(R) \cong R^{\chi}$ and $A = \ker \xi = 2\mathbb{Q}^{(L)} \oplus 0$.

Thus the exact sequence $0 \to A \to R \to \xi(R) \to 0$ does not split.

On the other hand, R is quasi-isomorphic to $\mathbb{Q}^{(L)} \oplus \xi(R)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

It follows from the results of Tsarev [2017] that the answer is positive if R has rank ≤ 2 .

うして ふゆう ふほう ふほう ふしつ

It follows from the results of Tsarev [2017] that the answer is positive if R has rank ≤ 2 .

We construct an E-ring R of rank 3 with the following properties:

•
$$R \subset \mathbb{Q} \times \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z};$$

• R is a counterexample to the conjecture of Bowshell and Schultz;

It follows from the results of Tsarev [2017] that the answer is positive if R has rank ≤ 2 .

We construct an E-ring R of rank 3 with the following properties:

•
$$R \subset \mathbb{Q} \times \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z};$$

• R is a counterexample to the conjecture of Bowshell and Schultz;

- the additive group of R is not q.d.;
- the additive group of the ring $\xi(R) \cong R/A$ is q.d.

$$K = \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z}, \quad T = \bigoplus_{p \in L} \mathbb{Z}/p^2 \mathbb{Z} \subset K, \quad \overline{k} = k + T.$$

$$K = \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z}, \quad T = \bigoplus_{p \in L} \mathbb{Z}/p^2 \mathbb{Z} \subset K, \quad \overline{k} = k + T.$$

Choose $x, y \in K$ such that $x^2 = y^2 = xy = 0$ and 1, x, y are independent.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

$$K = \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z}, \quad T = \bigoplus_{p \in L} \mathbb{Z}/p^2 \mathbb{Z} \subset K, \quad \overline{k} = k + T.$$

Choose $x, y \in K$ such that $x^2 = y^2 = xy = 0$ and 1, x, y are independent.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

We consider the ring $\underbrace{\overline{1} \mathbb{Q}^{(L)} \oplus \overline{x} \mathbb{Q}}_{\overline{U}} \oplus \underbrace{\overline{y} \mathbb{Q}}_{\overline{I}} \subset K/T.$

$$K = \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z}, \quad T = \bigoplus_{p \in L} \mathbb{Z}/p^2 \mathbb{Z} \subset K, \quad \overline{k} = k + T.$$

Choose $x, y \in K$ such that $x^2 = y^2 = xy = 0$ and 1, x, y are independent.

We consider the ring $\underbrace{\overline{1} \mathbb{Q}^{(L)} \oplus \overline{x} \mathbb{Q}}_{\overline{U}} \oplus \underbrace{\overline{y} \mathbb{Q}}_{\overline{I}} \subset K/T.$

Define $U \subset K$ by $U/T = \overline{U}$. For a group $H \subset \mathbb{Q} \oplus \mathbb{Q}$, let

ション ふゆ マ キャット しょう くしゃ

$$K = \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z}, \quad T = \bigoplus_{p \in L} \mathbb{Z}/p^2 \mathbb{Z} \subset K, \quad \overline{k} = k + T.$$

Choose $x, y \in K$ such that $x^2 = y^2 = xy = 0$ and 1, x, y are independent.

We consider the ring
$$\underbrace{1 \mathbb{Q}^{(L)} \oplus \overline{x} \mathbb{Q}}_{\overline{U}} \oplus \underbrace{\overline{y}}_{\overline{U}} \oplus K/T.$$

Define $U \subset K$ by $U/T = \overline{U}$. For a group $H \subset \mathbb{Q} \oplus \mathbb{Q}$, let

$$\overline{\Lambda} = \left\{ \left. \overline{1} \cdot q + \overline{x} \cdot a + \overline{y} \cdot b \right. \middle| \left. q \in \mathbb{Q}^{(L)} \right. \text{and} \left. (a, b) \in H \right\} \subset \overline{U} \oplus \overline{I}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

$$K = \prod_{p \in L} \mathbb{Z}/p^2 \mathbb{Z}, \quad T = \bigoplus_{p \in L} \mathbb{Z}/p^2 \mathbb{Z} \subset K, \quad \overline{k} = k + T.$$

Choose $x, y \in K$ such that $x^2 = y^2 = xy = 0$ and 1, x, y are independent. We consider the ring $\underbrace{\overline{1} \mathbb{Q}^{(L)} \oplus \overline{x} \mathbb{Q}}_{=} \oplus \underbrace{\overline{y} \mathbb{Q}}_{-} \subset K/T.$ Define $U \subset K$ by $U/T = \overline{U}$. For a group $H \subset \mathbb{Q} \oplus \mathbb{Q}$, let $\overline{\Lambda} = \left\{ \overline{1} \cdot q + \overline{x} \cdot a + \overline{y} \cdot b \mid q \in \mathbb{Q}^{(L)} \text{ and } (a, b) \in H \right\} \subset \overline{U} \oplus \overline{I}.$ Then $R = \left\{ \begin{pmatrix} u & z \\ 0 & u \end{pmatrix} \mid u \in U, z \in \overline{I} \text{ and } \overline{u} + z \in \overline{\Lambda} \right\}$ is the desired *E*-ring with $A \subset \begin{pmatrix} 0 & \overline{I} \\ 0 & 0 \end{pmatrix}$ (for a suitable *H*).

ション ふゆ マ キャット しょう くしゃ

[BW-1959] R. A. Beaumont, R. J. Wisner. *Rings with additive group which is a torsion-free group of rank two* // Acta Sci. Math. Szeged, 1959, **20**:2-3, 105–116.

[BP-1961a] R. A. Beaumont, R. S. Pierce. *Torsion-free rings* // Illinois J. Math., 1961, **5**:1, 61–98.

[BP-1961b] R. A. Beaumont, R. S. Pierce. *Torsion-free* groups of rank two // Memoirs AMS, 1961, **38**.

[BS-1977] R. A. Bowshell, P. Schultz. Unital rings whose additive endomorphisms commute // Math. Ann., 1977, **228**:3, 197–214.

[D-2007] О. И. Давыдова. *Факторно делимые группы* ранга 1 // Фундамент. и прикл. мат., 2007, **13**:3, 25–33.

[F-1984] A. A. Fomin. Abelian groups with free subgroups of infinite index and their endomorphism rings // Math. Notes, 1984, **36**:2, 581–585.

[FW-1998] A. A. Fomin, W. Wickless. *Quotient divisible Abelian groups* // Proc. Amer. Math. Soc., 1998, **126**:1, 45–52.

[F-2009] A. A. Fomin. Invariants for Abelian groups and dual exact sequences // J. Algebra, 2009, **322**:7, 2544–2565.

[Fuchs-1952] L. Fuchs. On subdirect unions, I // Acta Math. Acad. Sci. Hung., 1952, **3**:1-2, 103–120.

[Fuchs-2015] L. Fuchs. Abelian Groups, Springer, 2015.

[GSS-2004] R. Göbel, S. Shelah, L. Strüngmann. Generalized E-rings // Rings, Modules, Algebras, and Abelian Groups, Marcel Dekker, 2004, 291–306.

[R-1962] J. D. Reid. A note on torsion-free Abelian groups of infinite rank // Proc. AMS, 1962, **13**:2, 222–225.

[S-1973] P. Schultz. The endomorphism ring of the additive group of a ring // J. Austral. Math. Soc., 1973, 15:1, 60–69.

[Ts-2017] А.В. Царев. *Е-кольца малых рангов* // Чебышевский сб., 2017, **18**:2, 235–244.

[Ts-2021] A. V. Tsarev. A generalization of quotient divisible groups to the infinite rank case // Sib. Math. J., 2021, **62**:3, 554–559.

[ZT-2021] M. N. Zonov, E. A. Timoshenko. *Quotient divisible groups of rank* 2 // Math. Notes, 2021, **110**:1, 48–60.