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Main problem :

Lower estimates of the first non-trivial Neumann eigenvalues of the
p-Laplace operator, 1 < p <∞ :

∆pu = −div(|∇u(x)|p−2∇u(x)), x ∈ Ω,

in bounded simply connected domains Ω ⊂ R2.
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The classical Neumann spectral problem for ∆pu :{
−div(|∇u|p−2∇u) = µp|u|p−2u in Ω
∂u
∂n = 0 on ∂Ω.

The weak statement of this spectral problem : u ∈W 1
p (Ω) solves the

previous problem iff∫
Ω

(|∇u(x)|p−2∇u(x) · ∇v(x)) dx = µp

∫
Ω

|u(x)|p−2u(x)v(x) dx

for all v ∈W 1
p (Ω).
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By the Min–Max Principle the first non-trivial Neumann eigenvalue of
the p-Laplace operator µ1(Ω) can be characterized as

µ1(Ω) = min

‖∇u | Lp(Ω)‖p

‖u | Lp(Ω)‖p : u ∈W 1
p (Ω) \ {0},

∫
Ω

|u|p−2u dx = 0

 .

Moreover, µ1(Ω)−
1
p is equal to the best constant Bp,p(Ω) in the

p-Poincaré-Sobolev inequality

inf
c∈R
||u − c |Lp(Ω)|| ≤ Bp,p(Ω)||∇u |Lp(Ω)||, u ∈W 1

p (Ω).
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The Sobolev space W 1
p (Ω), 1 ≤ p <∞, is defined as a Banach space

of locally integrable weakly differentiable functions f : Ω→ R
equipped with the following norm :

‖f |W 1
p (Ω)‖ =

(∫
Ω

|f (x)|p dx
) 1

p

+

(∫
Ω

|∇f (x)|p dx
) 1

p

.
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If p = 2, then the classical upper estimate for the first non-trivial
Neumann eigenvalue of the Laplace operator states that :

µ1(Ω) ≤ µ1(Ω∗),

where Ω∗ is a ball of the same volume as Ω.

The classical result by L. E. Payne and H. F. Weinberger (1960) for
the Laplace operator states that in convex domains Ω ⊂ Rn, n ≥ 2,

µ1(Ω) ≥ π2

d(Ω)2 ,

where d(Ω) is a diameter of a convex domain Ω.
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In 2013 it was proved (L. Esposito, C. Nitsch, C. Trombetti) that if
Ω ⊂ Rn is a bounded convex domain having diameter d then for p ≥ 2

µ1(Ω) ≥
(

πp

d(Ω)

)p

,

where

πp = 2

(p−1)
1
p∫

0

dt

(1− tp/(p − 1))
1
p

= 2π
(p − 1)

1
p

p sin(π/p)
.
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In non-convex domains the first non-trivial Neumann eigenvalues can
not be estimated in the terms of Euclidean diameters of domains.

It can be seen by considering a domain consisting of two identical
squares connected by a thin corridor :

FIGURE: Nikodim-type example.
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We suggest the method that is based on the following diagram
proposed in (V. Gol’dstein and L. Gurov, 1994) :

W 1
p (Ω)

ϕ∗

−→ W 1
q (D)

↓ ↓

Ls(Ω)
(ϕ−1)∗←− Lr (D).

ϕ∗ is a bounded composition operator on Sobolev spaces,
ϕ∗(f ) = f ◦ ϕ ;

(ϕ−1)∗ is a bounded composition operator on Lebesgue spaces,
(ϕ−1)∗(g) = g ◦ ϕ−1.

In the terms of Sobolev-Poincaré inequalities this diagram can be
considered as a change of variables in the inequality :

inf
c∈R
||u − c |Lp(Ω)|| ≤ Bp,p(Ω)||∇u |Lp(Ω)||, u ∈W 1

p (Ω).
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Let Ω and Ω′ be domains in R2. A homeomorphism ϕ : Ω→ Ω′ is
called a K -quasiconformal mapping if ϕ ∈W 1

2,loc(Ω) and there exists
a constant 1 ≤ K <∞ such that

|Dϕ(x)|2 ≤ K |J(x , ϕ)| for almost all x ∈ Ω.
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The linear case p = 2

Estimates of a norm of a composition operator

ϕ∗ : L1
2(Ω)→ L1

2(D)

generated by the composition rule ϕ∗(f ) = f ◦ ϕ follow from :

S. K. Vodop’yanov and V. Gol’dshtein (1975). A homeomorphism
ϕ : Ω→ Ω̃ is a K -quasiconformal mapping iff ϕ generates by the
composition rule ϕ∗(f ) = f ◦ ϕ an isomorphism of Sobolev spaces
L1

n(Ω) and L1
n(Ω̃) :

‖ϕ∗(f ) | L1
n(Ω)‖ ≤ K

1
n ‖f | L1

n(Ω̃)‖

for any f ∈ L1
n(Ω̃).
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Estimates of a norm of a composition operator

(ϕ−1)∗ : Lr (D)→ Ls(Ω)

generated by the composition rule (ϕ−1)∗(g) = g ◦ ϕ−1 are based on
the notion of quasiconformal regular domains.

We say that a domain Ω ⊂ R2 is called a K -quasiconformal β-regular
domain if ∃ a K -quasiconformal mapping ϕ : D→ Ω such that∫

D

|J(x , ϕ)|β dx <∞ for some β > 1,

where J(x , ϕ) is the Jacobian of a mapping ϕ at a point x ∈ D.
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Lemma 1. Let Ω be a K -quasiconformal β-regular domain. Then for
any function f ∈ Lr (Ω,h), β/(β − 1) ≤ r <∞, the inequality

||f |Ls(Ω)|| ≤

∫
B

∣∣J(x , ϕ)
∣∣β dx

 1
β ·

1
s

||f |Lr (Ω,h)||

holds for s = β−1
β r .
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Theorem A. Let Ω ⊂ R2 be a K -quasiconformal β-regular domain.
Then :
• the embedding operator

iΩ : W 1
2 (Ω) ↪→ Ls(Ω)

is compact ∀ s ≥ 1 ;
• ∀ f ∈W 1

2 (Ω) and ∀ s ≥ 1, the Poincaré–Sobolev inequality

inf
c∈R
‖f − c | Ls(Ω)‖ ≤ Bs,2(Ω)‖∇f | L2(Ω)‖

holds with the constant

Bs,2(Ω) ≤ K
1
2 B βs

β−1 ,2
(D)‖Jϕ | Lβ(D)‖ 1

s .

where
B βs

β−1 ,2
(D) ≤

(
2−1π

) 2−r
2r (r + 2)

r+2
2r .
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Theorem B. Let Ω ⊂ R2 be a K -quasiconformal β-regular domain.
Then the spectrum of the Neumann–Laplace operator in Ω is discrete,
and can be written in the form of a non-decreasing sequence :

0 = µ0(Ω) < µ1(Ω) ≤ µ2(Ω) ≤ . . . ≤ µn(Ω) ≤ . . . ,

and
1

µ1(Ω)
≤ 4K

β
√
π

(
2β − 1
β − 1

) 2β−1
β ∥∥Jϕ | Lβ(D)

∥∥, β <∞.
In case β =∞

1
µ1(Ω)

≤ K
(j ′1,1)2

∥∥Jϕ | Lβ(D)
∥∥,

where j ′1,1 ≈ 1.84118 and ϕ : D→ Ω is the K -quasiconformal
mapping.
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Example 1. The homeomorphism

w = Az + Bz, z = x + iy , A > B ≥ 0,

is K -quasiconformal with K = A+B
A−B and maps the unit disc D onto the

interior of the ellipse

Ωe =

{
(u, v) ∈ R2 :

u2

(A + B)2 +
v2

(A− B)2 = 1
}
.

Then by Theorem B in case β =∞ we have

µ1(Ωe) ≥
(j ′1,1)2

(A + B)2 .

This estimate is better than the classical estimate for convex domains
µ1(Ωe) ≥ (π/d(Ωe))2, since d(Ωe) = 2(A + B) and 2j ′1,1 > π,
j ′1,1 ≈ 1.84118.

17



Neumann spectral problem
Composition operators

Main results
Spectral estimates in quasidiscs

Quasiconformal mappings preserving measure

Example 2. The homeomorphism

w = |z|k z, z = x + iy , k ≥ 0,

is (k + 1)-quasiconformal and maps the square

Q :=

{
(x , y) ∈ R2 : −

√
2

2
< x <

√
2

2
, −
√

2
2

< y <
√

2
2

}
onto star-shaped domains Ω∗ε with vertices (±

√
2/2, ±

√
2/2), (±ε, 0)

and (0, ±ε), where ε = (
√

2/2)k+1.

FIGURE: Domains Ω∗ε under ε = 1
2
√

2
and ε = 1

32 .

18



Neumann spectral problem
Composition operators

Main results
Spectral estimates in quasidiscs

Quasiconformal mappings preserving measure

Then by Theorem B in case β =∞ we have

µ1(Ω∗ε) ≥ π2

2(k + 1)2 .
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The degenerated case p > 2

We estimate a norm of a composition operator

ϕ∗ : L1
p(Ω)→ L1

q(D),

generated by the composition rule ϕ∗(f ) = f ◦ ϕ a K -quasiconformal
mapping

ϕ : D→ Ω.

The composition operator is bounded if and only if

Kp,q(D) =

∫
D

(
|Dϕ(x)|p

|J(x , ϕ)|

) q
p−q

dx


p−q
pq

<∞,

and the norm of the composition operator ‖ϕ∗‖ ≤ Kp,q(D).
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In the case of K -quasiconformal mappings ϕ : D→ Ω,
1 ≤ q ≤ 2 < p <∞

Kp,q(D) ≤ K
1
2π

2−q
2q |Ω|

p−2
2p ,

Estimates of a norm of a composition operator

(ϕ−1)∗ : Lr (B)→ Ls(Ω),

generated by the composition rule (ϕ−1)∗(g) = g ◦ ϕ−1 are based on
the notion of quasiconformal regular domains.

21



Neumann spectral problem
Composition operators

Main results
Spectral estimates in quasidiscs

Quasiconformal mappings preserving measure

Theorem C. Let Ω be a K -quasiconformal β-regular domain,
r = pβ/(β − 1), p > 2. Then the following inequality holds

1
µ1(Ω)

≤

inf
q∈(q∗,2]

2p

(
1− 1

q + 1
r

1
2 −

1
q + 1

r

)p− p
q + p

r

π
p
r −

p
2

K
p
2 |Ω|

p−2
2 · ||Jϕ |Lβ(D)||,

where q∗ = 2βp/(βp + 2(β − 1)).

22



Neumann spectral problem
Composition operators

Main results
Spectral estimates in quasidiscs

Quasiconformal mappings preserving measure

Example 3. For n ∈ N, the homeomorphism

ϕ(z) = A
(

z +
zn

n

)
+ B

(
z +

zn

n

)
, z = x + iy , A > B ≥ 0,

is quasiconformal with K = (A + B)/(A− B) and maps the unit disc D
onto the domain Ωn bounded by an epicycloid of (n − 1) cusps,
inscribed in the ellipse with semi-axes (A + B)(n + 1)/n and
(A− B)(n + 1)/n.
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FIGURE: Image of D under ϕ(z).

Then by Theorem C in case β =∞ we have

1
µ1(Ω)

≤ inf
q∈(q∗,2]


(

1− 1
q + 1

p
1
2 −

1
q + 1

p

)p+1− p
q
2p+2(A + B)p

(
n + 1

n

) p
2−1

,

where q∗ = 2p/(p + 2).
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The singular case 1 < p < 2

We estimate a norm of a composition operator

ϕ∗ : L1
p(Ω)→ L1

q(D),

generated by the composition rule ϕ∗(f ) = f ◦ ϕ a K -quasiconformal
mapping ϕ : D→ Ω, using the generalized Brennan’s conjecture :∫

Ω

|Dϕ(x)|β dx < +∞, for all
4K

2K + 1
< β <

4K
2K − 1

.
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A connection between Brennans conjecture and composition
operators on Sobolev spaces :

Theorem. Let Ω ⊂ R2 be a simply connected domain. Generalized
Brennan’s Conjecture holds for a number
β ∈ (4K/(2K + 1), 4K/(2K − 1)) if and only if any K -quasiconformal
homeomorphism ϕ : D→ Ω induces a bounded composition operator

ϕ∗ : L1
p(Ω)→ L1

q(D)

for any p ∈ (2 ,+∞) and q = pβ/(p + β − 2).
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In case of K -quasiconformal mappings ϕ : D→ Ω,

Kp,q(D) ≤ K
1
p

∫
D

|Dϕ(x)|
(p−2)q

p−q dx


p−q
pq

,

if
4K

2K + 1
< p < 2,

1 ≤ q <
2p

4K − (2K − 1)p
.
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Theorem D. Let Ω be a K -quasiconformal β-regular domain and
ϕ : D→ Ω be a K -quasiconformal mapping. Suppose that the
Brennan’s Conjecture holds. Then for any

4K
2K + 1

< p < 2

the following estimate

1
µ1(Ω)

≤ K‖Jϕ | Lβ(D)‖ inf
q∈I

{(
2
πν

(
1− ν

1/2− ν

)1−ν
)p

‖|Dϕ|p−2 | L q
p−q

(D)‖

}

holds, where I = [1,2p/(4K − (2K − 1)p)) and ν = 1/q− (β− 1)/βp.
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Example 4. The homeomorphism

w = |z|k z, z = x + iy , k ≥ 0,

is (k + 1)-quasiconformal and maps the square

Q :=

{
(x , y) ∈ R2 : −

√
2

2
< x <

√
2

2
, −
√

2
2

< y <
√

2
2

}

onto star-shaped domains Ω∗ε with vertices (±
√

2/2, ±
√

2/2), (±ε, 0)
and (0, ±ε), where ε = (

√
2/2)k+1.

In the case of porous media flows ( p = 3/2 ), taking q = 1, we have

1

µ
(1)
3/2(Ω∗ε(k))

≤ 16

√
(k + 1)3

2− k
, 0 ≤ k < 2.
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Now we precise Theorems B (C, D) in quasidiscs.

K -quasidiscs are images of the unit disc D ⊂ R2 under
K -quasiconformal homeomorphisms of the plane R2.

This class includes all Lipschitz simply connected domains but also
includes a class of fractal type domains like snowflakes. The
Hausdorff dimension of the quasidisc’s boundary can be any number
in [1,2).

The suggested approach is based on the sharp inverse Hölder
inequality for Jacobians of quasiconformal mappings.
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Let ψ : R2 → R2 be a K -quasiconformal mapping. Then for every disc
D ⊂ R2 and for any 1 < κ < K

K−1 the inverse Hölder inequality

∫
D

|J(x , ψ)|κ dx

 1
κ

≤ C2
κKπ

1
κ−1

4
exp

{
Kπ2(2 + π2)2

2 log 3

}∫
D

|J(x , ψ)| dx

holds, where

Cκ =
106

[(2κ− 1)(1− ν)]1/2κ , ν = 108κ 2κ− 2
2κ− 1

(24π2K )2κ < 1.
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Theorem E. Let Ω be a K -quasidisc. Then

µ1(Ω) ≥
Mp(K )

|Ω|
,

where Mp(K ) depends only on p and the quasiconformity coefficient
K of Ω.
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Quasiconformal mappings preserving measure

Example 1. The homeomorphism

ϕ(z) =
√

a2 + 1z + az, z = x + iy , a ≥ 0,

is a K -quasiconformal with K =

√
a2+1+a√
a2+1−a

and maps the unit disc D

onto the interior of ellipse

Ωe =

{
(x , y) ∈ R2 :

x2

(
√

a2 + 1 + a)2
+

y2

(
√

a2 + 1− a)2
= 1

}
.

The Jacobian J(z, ϕ) = |ϕz |2 − |ϕz |2 = 1.
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Example 2. The homeomorphism

ϕ(z) =
√

2(1 + z)
3
4 (1 + z)

1
4 , z = x + iy ,

is a K -quasiconformal with K = 2 and maps the unit disc D onto the
interior of the “rose petal”

Ωp :=
{

(ρ, θ) ∈ R2 : ρ = 2
√

2 cos(2θ), −π
4
≤ θ ≤ π

4

}
.

The Jacobian J(z, ϕ) = |ϕz |2 − |ϕz |2 = 1.
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