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Standard interpolations

The basic, classical (standard) interpolations include interpolations
of Lagrange, Hermite, Newton, etc.
Lagrange: Given the points {wj}mj=1 ⊂ C and the values cj ∈ C,
find the polynomial f (z) of degree m − 1 with the property

f (wj) = cj , ∀j = 1, . . . ,m.

Note that the interpolation polynomial is defined in terms of the
polynomial p(z) = (z − w1) · . . . · (z − wm) by the formula

f (z) = p(z)
m∑
j=1

cj
z − wj

reswj

(
1
p

)
.

Thus, specifying the interpolation nodes as the null set of the ideal
〈p〉 gives a toolkit for constructing an interpolation polynomial.



Standard interpolations

Hermite: Given the points {wj}mj=1 ⊂ C and the values cj ,k ∈ C,
where j = 1, . . . ,m, k = 0, . . . , µj − 1 find a polynomial f (z)
having at given points given values of derivatives up to orders of
µj − 1, that is,

f (k)(wj) = cj ,k , ∀j = 1, . . . ,m,∀k = 0, . . . , µj − 1.

In this problem, the corresponding ideal is taken by the generated
polynomial

p(z) = (z − w1)µ1 · · · (z − wm)µm



Non-standard 1-dimensional

Problem: Given the complex numbers aj ,k (j = 1, . . . ,m;
k = 0, . . . , µj − 1) and c . It is necessary to describe the set of all
functions f which are analytic in the neighborhood of Ω ⊂ C points
w1, . . . ,wm and satisfy the equation:

m∑
j=1

µj−1∑
k=0

aj ,k f
(k)(wj) = c . (1)

(D. Alpay, etc., 2016). Note that if f is a solution of (1), then
f + ph is also a solution, where

p(z) =
m∏
j=1

(z − wj)
µj , h ∈ O(Ω).

In other words, we can work in the factor ring O(Ω)/〈p〉 by the
ideal generated by the polynomial p.



Noetherian opeators

Definition (Ehrenpreis, Palamodov)
Let I ⊂ C[s1, . . . , sn] be a primary ideal. A family of linear
differential operators with polynomial coefficients ∂`(s,D),
` = 1, . . . , t is called a noetherian operator for I , if the conditions

∂`(s,D)ϕ(s)|V (I ) = 0, ∀` = 1, . . . , t

are necessary and sufficient for the function ϕ(s) to belong to
ideal I .



Noetherian operators in the one-dimensional case

In the one-dimensional case an arbitrary polynomial has the form:

p(s) = (s − w1)µ1 · . . . · (s − wk)µk ,

and its generated ideal is decomposed into the intersection of
primal ones

ρj = 〈(s − wj)
µj 〉, j = 1, . . . , k.

A necessary and sufficient condition for a given function ϕ to
belong to the primary component ρj is vanishing of ϕ by the
following operators with constant coefficients:

Lj ,0,Lj ,1, . . . ,Lj ,µj−1,

where Li ,j [ϕ(s)] = d jϕ
ds j

∣∣∣
s=wi

.



Non-standard n-dimensional

Problem (Alpay, Yger; 2019)
Let p−1(0) = {w1, . . . ,wm} and U be an open subset of Cn

containing p−1(0). Fix aj ,l , j = 1, . . . ,m, l ∈ Awj and c ; all of them
are complex numbers. We need to describe the space of
holomorphic functions f : U → C with the following property:

m∑
j=1

∑
`∈Awj

aj ,`Lwj ,`[f ](wj) = c . (2)



Basis in C[s]/〈p〉

The following monomial basis

B = {sβk ; k = 0, . . . ,N(p)− 1}

in the quotient space C[z ]/〈p〉 is one of ingredients for solving the
interpolation problem. In fact, this factor is the space of reminders
when dividing polynomials by the ideal 〈p〉. The basis B is
constructed using the Gröbner basis for the ideal 〈p〉.



Solution of the multidimensional Problem

Theorem (Alpay, Yger)
Let {w1, . . . ,wm} = p−1(0),U be an open subset in Cn containing
p−1(0). Let the sequence

a = {aj ,`, j = 1, . . . ,m, ` ∈ Awj}

and the complex number c be given. Let us denote the polynomials

ha
wj

(s) =
∑
`∈Awj

aj ,`(s − wj)
`/`!,

making up the sequence ha
w = [ha

w1
, . . . , ha

wm
], and let

α[ha
w ] = (α0[ha

w ], . . . , αN(p)−1[ha
w ])

be the projection of this sequence onto the quotient space C[z ]/〈p〉.



Solution of the multidimensional problem

Theorem (Alpay, Yger 2019)
Then:
I If α[ha

w ] = 0, then the problem has no solution in the case
c 6= 0, and any function f ∈ O(U) is a solution in the case
c = 0;

I If α[ha
w ] 6= 0, then f ∈ O(U) satisfies the condition (2) iff

α[f ] ·Qp[B] · α[ha
w ]T = c ,

where T is the transposition sign, and Qp[B] is the
Grothendieck global residues matrix:

Qp[B] = Res

[
sβk1+βk2ds

p1(s) . . . pn(s)

]
0≤k1,k2≤N〈p〉−1



In one variable there are two equivalent definitions of the residue:
by integral over small circle

res
a
g =

1
2πi

∫
|z−a|=ε

g(z)dz

and by coefficient c−1 of the Laurent decomposition

g(z) =
∑
k∈Z

ck(z − a)k

If a multidimentional analogue of a holomorphic function is
understood as a mapping Cn → Cn, it is convienient to use the so
called local (pointed) Grothendieck residue as an integral definition.



Grothendieck residue

Grothendieck residue is a cornerstone of complex analysis and
algebraic geometry and it plays a key roles in the theory of
singularity and foliations.
Assume that polynomials

f1, . . . , fn ∈ C[z ] = C[z1, . . . , zn]

have isolated common zero a ∈ Cn. Consider a rational differential
n-form

ω =
1

(2πi)n
h(z) dz

f1(z) . . . fn(z)
, (with dz = dz1 ∧ · · · ∧ dzn)



Grothendieck residue

Definition
The Grothendieck residue, associated with f = (f1, . . . , fn) and h, is
determined as an integral

res
a f

(h) =

∫
Γa

ω

of the form ω over a very special cycle

Γa = {z ∈ Ua : |fj(z) = εj , j = 1, . . . , n}

where the neighborhood Ua of a and εj are chosen such that the
closure Ua does not contain roots different from a and Γa ⊂⊂ Ua.



Another integral representation

Our goal is to represent the class of homology of cycle Γa as a
linear combination of toric cycles. We need the following theorem.
Consider the standard differential (0, n − 1) form

β = (n − 1)!

∑n
k=1 f kdf 1 ∧ . . . [k] · · · ∧ df n

(|f1|2 + · · ·+ |fn|2)n

Theorem
The local Grothendieck residue admits an integral representation

res
a

f (h) =

∫
S2n−1

h · β dz ,

where S2n−1 is a sphere arround a of a small radius.



Amoeba and its complement
Definition
Given a Laurent polynomial f its amoeba Af is the image of the
hypersurface V = f −1(0) under the map

Log : (z1, . . . , zn)→ (log |z1|, . . . , log |zn|).

For the amoeba we will also use notation AV .
Amoeba reflects the distribution of the algebraic set V . But more
precisely, the amoeba defines «emptness» for V .

Theorem (Gelfand, Kapranov, Zelevinsky)
The connected components of the amoeba complement cAf are
convex, and they are in bijective correspondence with the different
Laurent expansions (centered at the origin) of the rational function
1/f .
The convexity here follows from the general fact that the domains
of convergence of Laurent series are exactly the logarithmic convex
ones.



Newton polytope of f
The shape of the amoeba is closely related to the Newton polytope
∆f of the polynomial f . Recall that ∆f is defined as the convex
hull in Rn of the index set A in the experession

f (z1, . . . , zn) =
∑
α∈A

aαz
α

The set of integer points in ∆f admits a natural partition
∆f ∩ Zn =

⋃
Γ AΓ, where Γ is any face on ∆f and AΓ denotes the

intersection of Zn with the reflective interior of Γ. We shall consider
the dual cone Cν of ∆f at ν defined as

Cν =

{
s ∈ Rn : 〈s, ν〉 = max

α∈∆f

〈s, α〉
}

Notice that dimCν = n − dim Γ when ν ∈ AΓ. In particular, Cν has
nonempty interior if ν is a vertex of ∆f , and it equals {0} whenever
ν is an interior point of ∆f .



The order map on the complement cAf

Theorem (Forsberg, Passare, Tsikh)
On the set {E} of connected components of cAf there is an
injective map (the order map)

ν : {E} → ∆f ∩ Zn

with the property that the dual cone Cν(E) is equal to the recession
cone of E . That is, for any u ∈ E one has u + Cν ∈ E and no
strictly larger cone is contained in E . (Notice that if ν is the
k-skeleton of ∆f the Cν has dimension n − k).
Thus, connected components can be numbered as Eν with integer
ν ∈ ∆f .

Corollary
The cardinality of the set {E} of connected components satisfies
the inequalities

# Vert ∆f 6 #{E} 6 #∆f ∩ Zn



Gelfond-Khovanskii formula

Theorem (Gelfond-Khovanskii formula)
Assume that all faces of the Minkovskii sum ∆ = ∆1 + · · ·+ ∆n of
Newton polytopes of polynomials f1, . . . , fn are locked. Then the
sum of all local residues in (C \ 0)n is calculated by the formula:∑

{a}

res
a

f (h) =
∑

ν∈Vert ∆

kj ResEν

(
h

f1 . . . fn

)

where ResEν is the coefficient c−I of the Laurent decomposition for
h

f1...fn
in the connected component Eν .

In fact one can prove that the sum
∑
{a}

Γa of local Grothendieck

cycles Γa is homologically equivalent to the sum∑
ν∈Vert ∆

kν Log−1(uν), uν ∈ Eν



U -resolutions

Let U = {Ui}i∈I be an open finite covering of the manifold M. A
U-chain of M of degree q and dimension p is an alternating
function γ on I q+1 to Cp(M) such that

support γ(i0, i1, . . . , iq) ⊆ Ui0 ∩ · · · ∩ Uiq

for all i0, i1, . . . , iq.

Definition (Gleason)
Let ξ ∈ Zr (M). A U-resolution of ξ is a sequence ξ0, ξ1, . . . , ξr
such that
(a) ξq is a U-chain of degree q and dimension r − q

(b) ξ =
∑

i∈I ξ0(i)

(c) ∂ξq(i0, . . . , iq) =
∑
j∈I
ξq+1(j , i0, . . . , iq)



Main result

Theorem (Durakov, Tsikh, Ulvert)
Assume that f = (f1, . . . , fn) has a finite number of solutions in
(C \ 0)n. Then∑

a

res
a f

(h) =
∑

ν∈∂∆∩Zn

kj ResEν

(
h

f1 . . . fj

)
In the homological sense it means that∑

{a}

Γa =
∑

ν∈∂∆∩Zn

kν Log−1(uν), uν ∈ Eν .



Nongeneral position of ∆1, . . . ,∆n

Let us consider the system of
polynomials in two variables:

f1 = 3z2
1 z2 + z4

2 + 2z1z3
2 ,

f2 = z3
1 + 4z1z3

2 + 3z2
1 z

2
2

with the following Newton
polytopes in nongeneral position.



Nongeneral position of ∆1, . . . ,∆n

Amoebas Af1 and Af2
The local distribution at z = 0 on

the Reinhardt diagram

The U-resolution of the sphere S3 is Γ51 − Γ34 + Γ13 since it is the
boundary ∂σ2 of union of red arcs. So we get the representation of
the Grothendieck cycle by 3 toric cycles, where Γ34 does not
correspond to a vertex of ∆.



Computation of U -resolution

Here on the Reinhardt diagram
are 3 surfaces:

Vb = {z3
1 − z2z3 = 0},

Vg = {z3
2 − z1z3 = 0},

Vr = {z3
3 − z1z2 = 0}

distributed in a ball B . We have
to construct the U-resolution of
the sphere S5 ∈ H5(B \ {0}),
respective to the covering
Ub = B \ Vb, Ug = B \ Vg ,
Ur = B \ Vr .



Computation of U -resolution

1st step: Decomposition
S5 = σb + σg + σr by blue, green
and red chains. Each of them lies
outside of the surface of the
corresponding colour, i.e.
σb ∈ Ub, σg ∈ Ug , σr ∈ Ur .



Computation of U -resolution

2nd step: Compute the boundaries
∂σb, ∂σg , ∂σν . Each edge lies
outside of two surfaces with the
complement colour.



Computation of U -resolution

3rd step: Compute the boundaries
of edges taking into account the
ordering b, g , ν colours. So we
get the resolution ξ as the linear
combination

ξ = Γ511 + Γ115 + Γ151 − Γ222

of toric cycles.



The set of differential operators:

{L0,`} =
{
L0,000 =

(
−∂0 − ∂3

∂z1∂z2∂z3
− 1

4!
∂4

∂z4
1
− 1

4!
∂4

∂z4
2
− 1

4!
∂4

∂z4
3

)
;

L0,100 =

(
− 1
3!

∂3

∂z3
1
− ∂2

∂z2∂z3

)
;L0,010 =

(
− 1
3!

∂3

∂z3
2
− ∂2

∂z1∂z3

)
;

L0,001 =

(
− 1
3!

∂3

∂z3
3
− ∂2

∂z1∂z2

)
;L0,110 =

(
− ∂

∂z3

)
;L0,101 =

(
− ∂

∂z2

)
;

L0,011 =

(
− ∂

∂z1

)
;L0,200 =

(
−1
4

∂2

∂z2
1

)
;L0,020 =

(
−1
4

∂2

∂z2
2

)
;

L0,002 =

(
−1
4

∂2

∂z2
3

)
;L0,111 =

(
−∂0) ;L0,300 =

(
− 1
3!

∂

∂z1

)
;

L0,030

(
− 1
3!

∂

∂z2

)
;L0,003 =

(
− 1
3!

∂

∂z3

)
;L0,400 =

(
− 1
4!
∂0

)
;

L0,040 =

(
− 1
4!
∂0

)
;L0,004 =

(
− 1
4!
∂0

)}
.

is the standard collection of Noether operators for the ideal:

I0〈p〉 = {(z3
1 − z2z3)h1 + (z3

2 − z1z3)h2 + (z3
3 − z1z2)h3},

where h1, h2, h3 ∈ O0.



Theorem
If α[ha

w ] 6= 0, then the holomorphic function f (s) satisfies the
Alpay-Yger problem for single point (m = 1) iff the coordinatization
of f satisfies the following condition:(
a000 + a111 −

a400 + a040 + a004

24

)
α1[f ] +

(
a011 +

a300

6

)
α2[f ]+

+
(
a101 +

a030

6

)
α3[f ] +

(
a110 +

a003

6

)
α4[f ] +

a200

2
α5[f ]+

a020

2
α6[f ] +

a002

2
α7[f ] + a001α8[f ] + a010α9[f ]+

+ a001α10[f ] + a000α11[f ] = −c.

This means that the coordinate vector of f in the local algebra lies
in the prescribed affine hyperplane Πa ⊂ C11.



Theorem
Assume that the system of n germs p1, . . . , pn ∈ O0 satisfies the
following conditions:

∂ αpi
∂zα

(0) = 0 0 ≤ αi ≤ di − 1 i = 1, . . . , n

det

∂ djpi

∂z
dj
j

(0)

 6= 0

Then the following equation of ideals holds:

〈p1, . . . , pn〉 = 〈zd1
1 , . . . , zdnn 〉



A standard interpolation

Let f be the Hermite interpolating polynomial which solves the
problem: for given points {wj}mj=1 ⊂ C and values
{cj ,`}, j = 1, . . . ,m; ` = 0, . . . , µj − 1 find a polynomial f (z) with
the property f (`)(wj) = cj ,`. Write f in the form

f (z) =
m∑
j=1

µj−1∑
`=0

cj ,`Hwj ,`(z).

Consider a multidimentional analogues of this problem. Let
p = (p1, . . . , pn) be a sequence of polynomials in z = (z1, . . . , zn)
with a finite number of roots p−1(0) = {w1, . . . ,wm} ∈ Cn. Let Bj

be the monomial basis of the local algebra Owj/〈p〉. The dimention
of this algebra is equal to the multiplicity of p at the root wj .



A standard interpolation

Consider the problem: For the given {w1, . . . ,wm} and values
{cj ,`}, j = 1, . . . ,m; ` ∈ Awj (where Awj ⊂ Zn is the set of
exponents of basic monomials in Bj), find a polynomial f (z) with
the property

∂|`|f

∂z`
(wj) = cj ,`,

where ` = (`1, . . . , `n) and |`| = `1 + . . .+ `n.



A standard interpolation

Theorem
Assume that for each root w = wj ∈ p−1(0) there exist a such
vector dw ∈ Zn

+ that

∂|α|pi
∂zα

(w) = 0, 0 ≤ α1 ≤ d1,w−1, . . . , 0 ≤ αn ≤ dn,w−1, i = 1, . . . , n,

det

∣∣∣∣∣
∣∣∣∣∣∂dk,wpi∂z

dk,w
k

∣∣∣∣∣
∣∣∣∣∣ 6= 0 (here i , k = 1, . . . , n).

Then the polynomial

f (z) =
m∑
j=1

∑
`∈Awj

cj ,`

(
n∏

k=1

Hj ,`k

)

solves the standard problem



Thank you for your attention!


