Multidimentional algebraic interpolations

August Tsikh Siberian Federal University, Krasnoyarsk (joint work with M.E. Durakov and E.D. Leinartas)

> December reading in Tomsk 21 December 6-11, 2021

Standard interpolations

The basic, classical (standard) interpolations include interpolations of Lagrange, Hermite, Newton, etc.

Lagrange: Given the points $\{w_j\}_{j=1}^m \subset \mathbb{C}$ and the values $c_j \in \mathbb{C}$, find the polynomial f(z) of degree m-1 with the property

$$f(w_j) = c_j, \forall j = 1, \ldots, m.$$

Note that the interpolation polynomial is defined in terms of the polynomial $p(z) = (z - w_1) \cdot \ldots \cdot (z - w_m)$ by the formula

$$f(z) = p(z) \sum_{j=1}^{m} \frac{c_j}{z - w_j} \operatorname{res}_{w_j} \left(\frac{1}{p}\right)$$

Thus, specifying the interpolation nodes as the null set of the ideal $\langle p \rangle$ gives a toolkit for constructing an interpolation polynomial.

Standard interpolations

Hermite: Given the points $\{w_j\}_{j=1}^m \subset \mathbb{C}$ and the values $c_{j,k} \in \mathbb{C}$, where $j = 1, \ldots, m, \ k = 0, \ldots, \mu_j - 1$ find a polynomial f(z) having at given points given values of derivatives up to orders of $\mu_j - 1$, that is,

$$f^{(k)}(w_j) = c_{j,k}, \forall j = 1, \ldots, m, \forall k = 0, \ldots, \mu_j - 1.$$

In this problem, the corresponding ideal is taken by the generated polynomial

$$p(z)=(z-w_1)^{\mu_1}\cdots(z-w_m)^{\mu_m}$$

Non-standard 1-dimensional

Problem: Given the complex numbers $a_{j,k}$ (j = 1, ..., m; $k = 0, ..., \mu_j - 1)$ and c. It is necessary to describe the set of all functions f which are analytic in the neighborhood of $\Omega \subset \mathbb{C}$ points $w_1, ..., w_m$ and satisfy the equation:

$$\sum_{j=1}^{m} \sum_{k=0}^{\mu_j-1} a_{j,k} f^{(k)}(w_j) = c.$$
 (1)

(D. Alpay, etc., 2016). Note that if f is a solution of (1), then f + ph is also a solution, where

$$p(z) = \prod_{j=1}^m (z - w_j)^{\mu_j}, \quad h \in \mathcal{O}(\Omega).$$

In other words, we can work in the factor ring $\mathcal{O}(\Omega)/\langle p \rangle$ by the ideal generated by the polynomial *p*.

Definition (Ehrenpreis, Palamodov)

Let $I \subset \mathbb{C}[s_1, \ldots, s_n]$ be a primary ideal. A family of linear differential operators with polynomial coefficients $\partial_{\ell}(s, D)$, $\ell = 1, \ldots, t$ is called a noetherian operator for I, if the conditions

$$\partial_{\ell}(\boldsymbol{s}, D)\varphi(\boldsymbol{s})|_{V(I)} = 0, \quad \forall \ell = 1, \dots, t$$

are necessary and sufficient for the function $\varphi(s)$ to belong to ideal *I*.

Noetherian operators in the one-dimensional case

In the one-dimensional case an arbitrary polynomial has the form:

$$p(s)=(s-w_1)^{\mu_1}\cdot\ldots\cdot(s-w_k)^{\mu_k},$$

and its generated ideal is decomposed into the intersection of primal ones

$$\rho_j = \langle (s - w_j)^{\mu_j} \rangle, \quad j = 1, \dots, k.$$

A necessary and sufficient condition for a given function φ to belong to the primary component ρ_j is vanishing of φ by the following operators with constant coefficients:

$$\mathcal{L}_{j,0}, \mathcal{L}_{j,1}, \ldots, \mathcal{L}_{j,\mu_j-1},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\mathcal{L}_{i,j}[\varphi(s)] = \left. \frac{d^j \varphi}{ds^j} \right|_{s=w_i}$.

Non-standard *n*-dimensional

Problem (Alpay, Yger; 2019)

Let $\boldsymbol{p}^{-1}(0) = \{w_1, \dots, w_m\}$ and U be an open subset of \mathbb{C}^n containing $\boldsymbol{p}^{-1}(0)$. Fix $a_{j,l}, j = 1, \dots, m, l \in A_{w_j}$ and c; all of them are complex numbers. We need to describe the space of holomorphic functions $f: U \to \mathbb{C}$ with the following property:

$$\sum_{j=1}^{m}\sum_{\ell\in A_{w_j}}a_{j,\ell}\mathcal{L}_{w_j,\ell}[f](w_j)=c.$$
(2)

The following monomial basis

$$\mathcal{B} = \{oldsymbol{s}^{eta_k}; k=0,\ldots, oldsymbol{N}(oldsymbol{p})-1\}$$

in the quotient space $\mathbb{C}[\mathbf{z}]/\langle \mathbf{p} \rangle$ is one of ingredients for solving the interpolation problem. In fact, this factor is the space of reminders when dividing polynomials by the ideal $\langle \mathbf{p} \rangle$. The basis \mathcal{B} is constructed using the Gröbner basis for the ideal $\langle \mathbf{p} \rangle$.

Solution of the multidimensional Problem

Theorem (Alpay, Yger) Let $\{w_1, \ldots, w_m\} = \mathbf{p}^{-1}(0), U$ be an open subset in \mathbb{C}^n containing $\mathbf{p}^{-1}(0)$. Let the sequence

$$\boldsymbol{a} = \{\boldsymbol{a}_{j,\boldsymbol{\ell}}, j = 1, \ldots, m, \boldsymbol{\ell} \in A_{w_j}\}$$

and the complex number c be given. Let us denote the polynomials

$$h^{\boldsymbol{a}}_{w_j}(\boldsymbol{s}) = \sum_{\ell \in \mathcal{A}_{w_j}} a_{j,\ell} (\boldsymbol{s} - w_j)^{\ell} / \ell!,$$

making up the sequence $\boldsymbol{h}_{\boldsymbol{w}}^{\boldsymbol{a}} = [h_{w_1}^{\boldsymbol{a}}, \dots, h_{w_m}^{\boldsymbol{a}}]$, and let

$$\alpha[\boldsymbol{h}_{\boldsymbol{w}}^{\boldsymbol{a}}] = (\alpha_0[\boldsymbol{h}_{\boldsymbol{w}}^{\boldsymbol{a}}], \dots, \alpha_{N(\boldsymbol{p})-1}[\boldsymbol{h}_{\boldsymbol{w}}^{\boldsymbol{a}}])$$

be the projection of this sequence onto the quotient space $\mathbb{C}[\mathbf{z}]/\langle p \rangle$.

Solution of the multidimensional problem

Theorem (Alpay, Yger 2019)

Then:

- If α[h^a_w] = 0, then the problem has no solution in the case c ≠ 0, and any function f ∈ O(U) is a solution in the case c = 0;
- If $\alpha[\mathbf{h}_{\mathbf{w}}^{\mathbf{a}}] \neq 0$, then $f \in \mathcal{O}(U)$ satisfies the condition (2) iff

$$\alpha[\boldsymbol{f}] \cdot \boldsymbol{Q}_{\boldsymbol{p}}[\mathcal{B}] \cdot \alpha[\boldsymbol{h}_{\boldsymbol{w}}^{\boldsymbol{a}}]^{\mathcal{T}} = \boldsymbol{c},$$

where T is the transposition sign, and $Q_p[B]$ is the Grothendieck global residues matrix:

$$\boldsymbol{Q}_{\boldsymbol{p}}[\mathcal{B}] = \operatorname{Res}\left[\frac{\boldsymbol{s}^{\beta_{k_1}+\beta_{k_2}}d\boldsymbol{s}}{p_1(\boldsymbol{s})\dots p_n(\boldsymbol{s})}\right]_{0 \le k_1, k_2 \le N \langle \boldsymbol{p} \rangle - 1}$$

In one variable there are two equivalent definitions of the residue: by integral over small circle

$$\operatorname{resg}_{a} = \frac{1}{2\pi i} \int_{|z-a|=\varepsilon} g(z) dz$$

and by coefficient c_{-1} of the Laurent decomposition

$$g(z) = \sum_{k \in \mathbb{Z}} c_k (z - a)^k$$

If a multidimentional analogue of a holomorphic function is understood as a mapping $\mathbb{C}^n \to \mathbb{C}^n$, it is convienient to use the so called *local (pointed) Grothendieck residue* as an integral definition.

Grothendieck residue

Grothendieck residue is a cornerstone of complex analysis and algebraic geometry and it plays a key roles in the theory of singularity and foliations.

Assume that polynomials

$$f_1,\ldots,f_n\in\mathbb{C}[z]=\mathbb{C}[z_1,\ldots,z_n]$$

have isolated common zero $a \in \mathbb{C}^n$. Consider a rational differential *n*-form

$$\omega = \frac{1}{(2\pi i)^n} \frac{h(z) dz}{f_1(z) \dots f_n(z)}, \quad (\text{with } dz = dz_1 \wedge \dots \wedge dz_n)$$

Grothendieck residue

Definition

The Grothendieck residue, associated with $f = (f_1, \ldots, f_n)$ and h, is determined as an integral

$$\operatorname{res}_{a_{f}}(h) = \int_{\Gamma_{a}} \omega$$

of the form ω over a very special cycle

$$\Gamma_{a} = \{z \in U_{a} \colon |f_{j}(z) = \varepsilon_{j}, j = 1, \dots, n\}$$

where the neighborhood U_a of a and ε_j are chosen such that the closure \overline{U}_a does not contain roots different from a and $\Gamma_a \subset \subset U_a$.

Another integral representation

Our goal is to represent the class of homology of cycle Γ_a as a linear combination of toric cycles. We need the following theorem. Consider the standard differential (0, n - 1) form

$$\beta = (n-1)! \frac{\sum_{k=1}^{n} \overline{f}_k d\overline{f}_1 \wedge \dots [k] \cdots \wedge d\overline{f}_n}{(|f_1|^2 + \cdots + |f_n|^2)^n}$$

Theorem

The local Grothendieck residue admits an integral representation

$$\operatorname{res}_{a}_{f}(h) = \int_{S^{2n-1}} h \cdot \beta \, dz,$$

where S^{2n-1} is a sphere arround a of a small radius.

Amoeba and its complement

Definition

Given a Laurent polynomial f its amoeba A_f is the image of the hypersurface $V = f^{-1}(0)$ under the map

$$\mathsf{Log}: (z_1, \ldots, z_n) \to (\log |z_1|, \ldots, \log |z_n|).$$

For the amoeba we will also use notation A_V .

Amoeba reflects the distribution of the algebraic set V. But more precisely, the amoeba defines «emptness» for V.

Theorem (Gelfand, Kapranov, Zelevinsky)

The connected components of the amoeba complement ${}^{c}A_{f}$ are convex, and they are in bijective correspondence with the different Laurent expansions (centered at the origin) of the rational function 1/f.

The convexity here follows from the general fact that the domains of convergence of Laurent series are exactly the logarithmic convex ones.

Newton polytope of f

The shape of the amoeba is closely related to the Newton polytope Δ_f of the polynomial f. Recall that Δ_f is defined as the convex hull in \mathbb{R}^n of the index set A in the expression

$$f(z_1,\ldots,z_n)=\sum_{\alpha\in A}a_{\alpha}z^{\alpha}$$

The set of integer points in Δ_f admits a natural partition $\Delta_f \cap \mathbb{Z}^n = \bigcup_{\Gamma} A_{\Gamma}$, where Γ is any face on Δ_f and A_{Γ} denotes the intersection of \mathbb{Z}^n with the reflective interior of Γ . We shall consider the dual cone C_{ν} of Δ_f at ν defined as

$$C_{\nu} = \left\{ s \in \mathbb{R}^n \colon \langle s, \nu \rangle = \max_{\alpha \in \Delta_f} \langle s, \alpha \rangle \right\}$$

Notice that dim $C_{\nu} = n - \dim \Gamma$ when $\nu \in A_{\Gamma}$. In particular, C_{ν} has nonempty interior if ν is a vertex of Δ_f , and it equals $\{0\}$ whenever ν is an interior point of Δ_f .

The order map on the complement $^{c}A_{f}$

Theorem (Forsberg, Passare, Tsikh)

On the set $\{E\}$ of connected components of ${}^{c}A_{f}$ there is an injective map (the order map)

$$\nu\colon \{E\}\to \Delta_f\cap\mathbb{Z}^n$$

with the property that the dual cone $C_{\nu(E)}$ is equal to the recession cone of E. That is, for any $u \in E$ one has $u + C_{\nu} \in E$ and no strictly larger cone is contained in E. (Notice that if ν is the k-skeleton of Δ_f the C_{ν} has dimension n - k). Thus, connected components can be numbered as E_{ν} with integer $\nu \in \Delta_f$.

Corollary

The cardinality of the set $\{E\}$ of connected components satisfies the inequalities

$$\#\operatorname{Vert}\Delta_f \leqslant \#\{E\} \leqslant \#\Delta_f \cap \mathbb{Z}^n$$

Gelfond-Khovanskii formula

Theorem (Gelfond-Khovanskii formula)

Assume that all faces of the Minkovskii sum $\Delta = \Delta_1 + \cdots + \Delta_n$ of Newton polytopes of polynomials f_1, \ldots, f_n are locked. Then the sum of all local residues in $(\mathbb{C} \setminus 0)^n$ is calculated by the formula:

$$\sum_{\{a\}} \operatorname{res}_{a} f(h) = \sum_{\nu \in \operatorname{Vert} \Delta} k_j \operatorname{Res}_{E_{\nu}} \left(\frac{h}{f_1 \dots f_n} \right)$$

where $\operatorname{Res}_{E_{\nu}}$ is the coefficient c_{-1} of the Laurent decomposition for $\frac{h}{f_1...f_n}$ in the connected component E_{ν} . In fact one can prove that the sum $\sum_{\{a\}} \Gamma_a$ of local Grothendieck cycles Γ_a is homologically equivalent to the sum

$$\sum_{
u\in \operatorname{Vert}\Delta}k_
u\operatorname{Log}^{-1}(u_
u),\quad u_
u\in E_
u$$

$\mathcal{U}\text{-}\mathsf{resolutions}$

Let $U = \{U_i\}_{i \in I}$ be an open finite covering of the manifold M. A U-chain of M of degree q and dimension p is an alternating function γ on I^{q+1} to $C_p(M)$ such that

support
$$\gamma(i_0, i_1, \ldots, i_q) \subseteq U_{i_0} \cap \cdots \cap U_{i_q}$$

for all i_0, i_1, \ldots, i_q .

Definition (Gleason)

Let $\xi \in Z_r(M)$. A *U*-resolution of ξ is a sequence $\xi_0, \xi_1, \ldots, \xi_r$ such that

(a)
$$\xi_q$$
 is a U-chain of degree q and dimension $r - q$
(b) $\xi = \sum_{i \in I} \xi_0(i)$
(c) $\partial \xi_q(i_0, \dots, i_q) = \sum_{j \in I} \xi_{q+1}(j, i_0, \dots, i_q)$

Main result

Theorem (Durakov, Tsikh, Ulvert)

Assume that $f = (f_1, \ldots, f_n)$ has a finite number of solutions in $(\mathbb{C} \setminus 0)^n$. Then

$$\sum_{a} \operatorname{res}_{a}_{f}(h) = \sum_{\nu \in \partial \Delta \cap \mathbb{Z}^{n}} k_{j} \operatorname{Res}_{E_{\nu}} \left(\frac{h}{f_{1} \dots f_{j}} \right)$$

In the homological sense it means that

$$\sum_{\{a\}} \Gamma_a = \sum_{\nu \in \partial \Delta \cap \mathbb{Z}^n} k_{\nu} \log^{-1}(u_{\nu}), \quad u_{\nu} \in E_{\nu}.$$

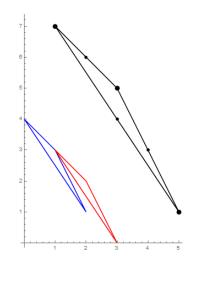
Nongeneral position of $\Delta_1, \ldots, \Delta_n$

Let us consider the system of polynomials in two variables:

$$f_1 = 3z_1^2 z_2 + z_2^4 + 2z_1 z_2^3,$$

$$f_2 = z_1^3 + 4z_1 z_2^3 + 3z_1^2 z_2^2$$

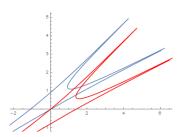
with the following Newton polytopes in nongeneral position.



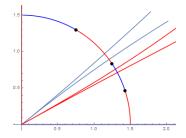
イロト イヨト イヨト

ъ

Nongeneral position of $\Delta_1, \ldots, \Delta_n$



Amoebas A_{f_1} and A_{f_2}



The local distribution at z = 0 on the Reinhardt diagram

The \mathcal{U} -resolution of the sphere S^3 is $\Gamma_{51} - \Gamma_{34} + \Gamma_{13}$ since it is the boundary $\partial \sigma_2$ of union of red arcs. So we get the representation of the Grothendieck cycle by 3 toric cycles, where Γ_{34} does not correspond to a vertex of Δ .

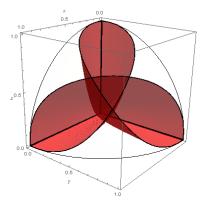
Here on the Reinhardt diagram are 3 surfaces:

$$V_b = \{z_1^3 - z_2 z_3 = 0\},$$

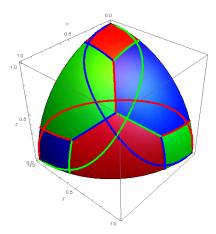
$$V_g = \{z_2^3 - z_1 z_3 = 0\},$$

$$V_r = \{z_3^3 - z_1 z_2 = 0\}$$

distributed in a ball *B*. We have to construct the \mathcal{U} -resolution of the sphere $S^5 \in H_5(B \setminus \{0\})$, respective to the covering $U_b = B \setminus V_b$, $U_g = B \setminus V_g$, $U_r = B \setminus V_r$.

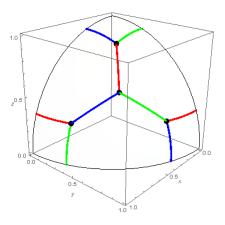


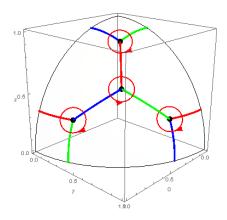
▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで



1st step: Decomposition $S^5 = \sigma_b + \sigma_g + \sigma_r$ by blue, green and red chains. Each of them lies outside of the surface of the corresponding colour, i.e. $\sigma_b \in U_b, \sigma_g \in U_g, \sigma_r \in U_r$.

 2^{nd} step: Compute the boundaries $\partial \sigma_b, \partial \sigma_g, \partial \sigma_{\nu}$. Each edge lies outside of two surfaces with the complement colour.





 3^{rd} step: Compute the boundaries of edges taking into account the ordering b, g, ν colours. So we get the resolution ξ as the linear combination

$$\xi = \Gamma_{511} + \Gamma_{115} + \Gamma_{151} - \Gamma_{222}$$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

of toric cycles.

The set of differential operators:

$$\{ \mathcal{L}_{0,\ell} \} = \left\{ \mathcal{L}_{0,000} = \left(-\partial^0 - \frac{\partial^3}{\partial z_1 \partial z_2 \partial z_3} - \frac{1}{4!} \frac{\partial^4}{\partial z_1^4} - \frac{1}{4!} \frac{\partial^4}{\partial z_2^4} - \frac{1}{4!} \frac{\partial^4}{\partial z_3^4} \right); \\ \mathcal{L}_{0,100} = \left(-\frac{1}{3!} \frac{\partial^3}{\partial z_1^3} - \frac{\partial^2}{\partial z_2 \partial z_3} \right); \\ \mathcal{L}_{0,010} = \left(-\frac{1}{3!} \frac{\partial^3}{\partial z_3^3} - \frac{\partial^2}{\partial z_1 \partial z_2} \right); \\ \mathcal{L}_{0,010} = \left(-\frac{1}{3!} \frac{\partial^3}{\partial z_3^3} - \frac{\partial^2}{\partial z_1 \partial z_2} \right); \\ \mathcal{L}_{0,011} = \left(-\frac{\partial}{\partial z_1} \right); \\ \mathcal{L}_{0,020} = \left(-\frac{1}{4} \frac{\partial^2}{\partial z_2^2} \right); \\ \mathcal{L}_{0,002} = \left(-\frac{1}{4} \frac{\partial^2}{\partial z_2^3} \right); \\ \mathcal{L}_{0,0030} \left(-\frac{1}{3!} \frac{\partial^2}{\partial z_2} \right); \\ \mathcal{L}_{0,003} = \left(-\frac{1}{3!} \frac{\partial}{\partial z_2} \right); \\ \mathcal{L}_{0,004} = \left(-\frac{1}{4!} \partial^0 \right); \\ \mathcal{L}_{0,004} = \left(-\frac{1}{4!} \partial^0 \right) \right\}.$$

is the standard collection of Noether operators for the ideal:

$$l_0 \langle \boldsymbol{p} \rangle = \{ (z_1^3 - z_2 z_3) h_1 + (z_2^3 - z_1 z_3) h_2 + (z_3^3 - z_1 z_2) h_3 \}$$

◆□ → < @ → < ≥ → < ≥ → < ≥ → < </p>

where $h_1, h_2, h_3 \in \mathcal{O}_0$.

Theorem

If $\alpha[\mathbf{h}_{w}^{a}] \neq 0$, then the holomorphic function $f(\mathbf{s})$ satisfies the Alpay-Yger problem for single point (m = 1) iff the coordinatization of f satisfies the following condition:

$$\begin{pmatrix} a_{000} + a_{111} - \frac{a_{400} + a_{040} + a_{004}}{24} \end{pmatrix} \alpha_1[f] + \left(a_{011} + \frac{a_{300}}{6}\right) \alpha_2[f] + \\ + \left(a_{101} + \frac{a_{030}}{6}\right) \alpha_3[f] + \left(a_{110} + \frac{a_{003}}{6}\right) \alpha_4[f] + \frac{a_{200}}{2} \alpha_5[f] + \\ \frac{a_{020}}{2} \alpha_6[f] + \frac{a_{002}}{2} \alpha_7[f] + a_{001} \alpha_8[f] + a_{010} \alpha_9[f] + \\ + a_{001} \alpha_{10}[f] + a_{000} \alpha_{11}[f] = -c.$$

This means that the coordinate vector of f in the local algebra lies in the prescribed affine hyperplane $\Pi_a \subset \mathbb{C}^{11}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem

Assume that the system of n germs $p_1, \ldots, p_n \in \mathcal{O}_0$ satisfies the following conditions:

$$\frac{\partial^{\alpha} p_i}{\partial z^{\alpha}}(0) = 0 \qquad 0 \le \alpha_i \le d_i - 1 \qquad i = 1, \dots, n$$

$$\det\left[\frac{\partial^{d_j} p_i}{\partial z_j^{d_j}}(0)\right] \neq 0$$

Then the following equation of ideals holds:

$$\langle p_1, \ldots, p_n \rangle = \langle z_1^{d_1}, \ldots, z_n^{d_n} \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A standard interpolation

Let f be the Hermite interpolating polynomial which solves the problem: for given points $\{w_j\}_{j=1}^m \subset \mathbb{C}$ and values $\{c_{j,\ell}\}, j = 1, \ldots, m; \ \ell = 0, \ldots, \mu_j - 1$ find a polynomial f(z) with the property $f^{(\ell)}(w_j) = c_{j,\ell}$. Write f in the form

$$f(z) = \sum_{j=1}^{m} \sum_{\ell=0}^{\mu_j-1} c_{j,\ell} H_{w_j,\ell}(z).$$

Consider a multidimentional analogues of this problem. Let $p = (p_1, \ldots, p_n)$ be a sequence of polynomials in $z = (z_1, \ldots, z_n)$ with a finite number of roots $p^{-1}(0) = \{w_1, \ldots, w_m\} \in \mathbb{C}^n$. Let B_j be the monomial basis of the local algebra $\mathcal{O}_{w_j}/\langle p \rangle$. The dimention of this algebra is equal to the multiplicity of p at the root w_i .

A standard interpolation

Consider the problem: For the given $\{w_1, \ldots, w_m\}$ and values $\{c_{j,\ell}\}, j = 1, \ldots, m; \ell \in A_{w_j}$ (where $A_{w_j} \subset \mathbb{Z}^n$ is the set of exponents of basic monomials in B_j), find a polynomial f(z) with the property

$$rac{\partial^{|\ell|}f}{\partial z^\ell}(w_j) = c_{j,\ell},$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

where $\ell = (\ell_1, \ldots, \ell_n)$ and $|\ell| = \ell_1 + \ldots + \ell_n$.

A standard interpolation

Theorem

Assume that for each root $w = w_j \in p^{-1}(0)$ there exist a such vector $d_w \in \mathbb{Z}_+^n$ that

$$\frac{\partial^{|\alpha|} p_i}{\partial z^{\alpha}}(w) = 0, \ 0 \le \alpha_1 \le d_{1,w} - 1, \dots, 0 \le \alpha_n \le d_{n,w} - 1, \ i = 1, \dots, n,$$

$$\det \left\| \frac{\partial^{d_{k,w}} p_i}{\partial z_k^{d_{k,w}}} \right\| \neq 0 \quad (here \ i, k = 1, \dots, n).$$

Then the polynomial

$$f(z) = \sum_{j=1}^{m} \sum_{\ell \in A_{w_j}} c_{j,\ell} \left(\prod_{k=1}^{n} H_{j,\ell_k} \right)$$

solves the standard problem

Thank you for your attention!

<□ > < @ > < E > < E > E のQ @