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The talk is based on joint works (some of which are in progress) with

• Maxim Prasolov and

• Vladimir Shastin.
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Oriented contact structure on a compact oriented M 3:

ξ = keror α, (α ∧ dα)x 6= 0 ∀x ∈M 3.

Equivalently: a 1-form α up to α 7→ λα, λ(x) > 0 ∀x.

A parametrized curve γ is ξ-Legendrian (respectively, ξ-positively transverse, ξ-negatively
transverse), where ξ = keror α, if

αγ(t)(γ̇(t)) = 0 ∀t

(respectively, αγ(t)(γ̇(t)) > 0, αγ(t)(γ̇(t)) < 0).

The standard contact structure in R3 (the default choice):

ξ+ = keror α+, where α+ = x dy + dz.

We will also deal with the following mirror image of ξ+:

ξ− = keror α−, where α− = −x dy + dz.
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Along the curve: x = −dz
dy
.
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Two topologically equivalent Legendrian links became equivalent after some number of
stabilizations (D.Fuchs–S.Tabachnikov, 1997).
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Classical invariants of Legendrian links

Thurston–Bennequin number tb(K) of a Legendrian link K is defined as

tb(K) = w − c/2,

where w is the writhe and c is the number of cups of the front projection of K.

Rotation number r(K) of an oriented Legendrian link K is

1

2
(c− − c+),

where c+ (respectively, c−) is the number of cusps oriented down (repsectively, oriented
up).
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Ya.Eliashberg, M.Fraser, 1995: Legendrian unknots having the same classical invariants
are equivalent.

Yu.Chekanov 1997: not true for non-trivial knots.

Example (knot type 52):

6∼



More Legendrian and transverse link invariants
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‘Reidemeister moves’ for rectangular diagrams:

• exchange moves;

• stabilizations and destabilizations.

Conventions:

no vertices of the di-
agram except at the
corners

vertices to be removed

vertices to be added
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Type
−→
I Type

←−
I

Type
−→
II Type
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II

A destabilization = the inverse of a stabilization
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exchange moves, S−→

I
, S←−

I
, S−→

II

= {transverse links up to transverse isotopy}

By [R]T1,...,Tk we denote the class of R in
{rectangular diagrams}

exchange moves, ST1, . . . , STk
.

In particular, [R] is the exchange class of R.



Stabilizations are well defined on exchange classes: if R1 7→ R2 is a stabilization, then, for
any R′1 ∈ [R1], there is a stabilization R′1 7→ R′2 of the same type such that R′2 ∈ [R2].
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With every composable sequence of elementary moves s : R 7→ R′ we associate an ele-
ment ŝ of

Diff++

(
(S3, R̂), (S3, R̂′)

)
/ ∼

so that ŝ1s2 = ŝ2 ◦ ŝ1 holds for composable sequences.

If R = R′, then ŝ is an element of the orientation-preserving symmetry group of R̂:

ŝ ∈ Sym(R̂) = Diff++

(
(S3, R̂), (S3, R̂)

)
/ ∼ .
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1. ŝ = ŝIsII;

2. sI (respectively, sII) includes only exchange moves and type I (respectively, type II)
stabilizations and destabilizations.

Non-triviality theorem: if s, sI, sII are as above and R = R′, [R] 6= [R′′], then
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Commutation theorem: for any composable sequence s : R 7→ R′ of elementary
moves producing R′ from R there are composable sequences of elementary moves sI :
R 7→ R′′ and sII : R′′ 7→ R′ such that:

1. ŝ = ŝIsII;

2. sI (respectively, sII) includes only exchange moves and type I (respectively, type II)
stabilizations and destabilizations.

Non-triviality theorem: if s, sI, sII are as above and R = R′, [R] 6= [R′′], then

ŝ 6= 1 ∈ Sym(R̂).

Partial diamond lemma: If [R1] 7→ [R0] and [R2] 7→ [R0] are stabilizations of types T1
and T2, respectively, with T1 ∈ {

−→
I ,
←−
I }, T2 ∈ {

−→
II ,
←−
II }, then there exist a rectangular

diagram R3 and stabilizations [R3] 7→ [R1], [R3] 7→ [R2] of types T2, T1, respectivley.
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In general, there is an algorithm to find finitely many composable sequences of elementary
moves s1, . . . , sm : R1 7→ R1 such that ŝ1, . . . , ŝm generate Sym(R̂1). From them we
learn how many type I stabilizations have to be applied to [R1] and [R2] to get the same
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Corollary: the equivalence of Legendrian links is decidable.



Example

6∼



In order to extend the approach to transverse links we have to be able to decide whether
or not [R1]−→II = [R2]−→II .



In order to extend the approach to transverse links we have to be able to decide whether
or not [R1]−→II = [R2]−→II .

This is also decidable.
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{rectangular diagrams}
exchange moves, S−→

II

=
{tranverse-Legendrian link diagrams}

{Reidemeister-III moves, exchange moves}



Bigon moves

←→

←→
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The homology class and the number of self-intersections of the diagram are preserved,
hence, all combinatorial types of TL-diagrams representing [R]−→

II
are searchable.

Corollary: the equivalence of transverse links is decidable.


