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The talk is based on joint works (some of which are in progress) with
e Maxim Prasolov and

e Vladimir Shastin.
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Oriented contact structure on a compact oriented M?:
£ =kergr, (aAda), #0 Voe M.

Equivalently: a 1-form a up to o — Ao, A(z) > 0 V.

A parametrized curve 7y is £ -Legendrian (respectively, &-positively transverse, &-negatively
transverse), where & = kery, «, if

Qo (t) (¥(t)) =0 Vi

(respectively, a. ) (Y(t)) > 0, ay)(¥(t)) < 0).

The standard contact structure in R? (the default choice):

&, = kery, ay, where ay = xdy + dz.

We will also deal with the following mirror image of &, :

§_ = ker,; a—, where a_ = —x dy + dz.
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Stabilizations and destabilizations of Legendrian links

{Legendrian links} {positively transverse links}

Legendrian isotopy, S_ transverse 1sotopy
{Legendrian links} ~ {negatively transverse links}
Legendrian isotopy, Sy transverse isotopy

Two topologically equivalent Legendrian links became equivalent after some number of
stabilizations (D.Fuchs—S.Tabachnikov, 1997).
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Thurston—Bennequin number th(K) of a Legendrian link K is defined as
th(K) = w — ¢/2,

where w is the writhe and ¢ is the number of cups of the front projection of K.

Rotation number r(K) of an oriented Legendrian link K is

1
5(6_ T C-l-))

where ¢, (respectively, c_) is the number of cusps oriented down (repsectively, oriented
up).
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Ya.Eliashberg, M.Fraser, 1995: Legendrian unknots having the same classical invariants
are equivalent.

Yu.Chekanov 1997: not true for non-trivial knots.

Example (knot type 59):
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THE LEGENDRIAN KNOT ATLAS

WUTICHAI CHONGCHITMATE AND LENHARD NG

This is the Legendrian knot atlas, available online at
http://www.math.duke.edu/ " ng/atlas/

(permanent address: http://alum.mit.edu/www/ng/atlas/)), and intended
to accompany the paper “An atlas of Legendrian knots” by the authors [2].
This file was last changed on 22 October 2015.

The table on the following pages depicts conjectural classifications of Leg-
endrian knots in all prime knot types of arc index up to 9. For each knot, we
present a conjecturally complete list of non-destabilizable Legendrian rep-
resentatives, modulo the symmetries of orientation reversal L — —L and
Legendrian mirroring L — u(L). As usual, rotate 45° counterclockwise to
translate from grid diagrams to fronts.

Each knot also comes with its conjectural Legendrian mountain range
(extending infinitely downwards), comprised of black and red dots, plot-
ted according to their Thurston—-Bennequin number (vertical) and rotation
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‘Reidemeister moves’ for rectangular diagrams:

e cxchange moves;

e stabilizations and destabilizations.

Conventions:

no vertices of the di-
agram except at the
COINers

® O vertices to be removed

® O vertices to be added
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Stabilizations

= E B E

T ype Type
Type I Type 11 ?

A destabilization = the inverse of a stabilization
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exchange moves, S+, S5

{rectangular diagrams}

= {transverse links up to transverse isotopy}
exchange moves, S, S¢, St

{rectangular diagrams}

By |R]r,... 1, we denote the class of R in

exchange moves, Sty, ..., ST,

In particular, |R] is the exchange class of R.



Stabilizations are well defined on exchange classes: it Ry — Rj is a stabilization, then, for
any R} € [Ry], there is a stabilization R} — R} of the same type such that R, € [Ry).
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With every rectangular diagram of a link R we associate an actual smooth link RCS3

With every composable sequence of elementary moves s : R — R’ we associate an ele-
ment s of

Dift,, (8, R), (S, R'))/ ~

so that 5155 = §3 o 57 holds for composable sequences.

If R = R’, then 5is an element of the orientation-preserving symmetry group of R:

§ e Sym(R) = Diff , ((S*, R), (S*, R))/ ~ .
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Main technical results

Commutation theorem: for any composable sequence s : R +— R’ of elementary
moves producing R’ from R there are composable sequences of elementary moves sy :

R~ R" and sy1: R” — R’ such that:

1. § = Ss1;
2. s1 (respectively, sy1) includes only exchange moves and type I (respectively, type II)
stabilizations and destabilizations.

Non-triviality theorem: if s, si, s;j are as above and R = R’ [R] # [R"], then

$+£1 € Sym(R).

Partial diamond lemma: If [R1 [Ro] and [R % — | Ry| are stabilizations of types T}

%
S T} then there exist a rectangular
|

a
and T5, respectively, with T7 € { }
Ry, [Rg] [RQ] of types Ty, T}, respectivley.

diagram Rj3 and stabilizations | R3]
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We may assume [Rl]ﬁﬁ = [Rg]ﬁﬁ.

Then if Sym(Ry) = {1} and [Ry] # [Ry], then [Ri] ¢ # [Ral7 ¢

In general, there is an algorithm to find finitely many composable sequences of elementary
moves Si,...,Sm, : Ry — Ry such that s1,...,5,, generate Sym(Ry). From them we
learn how many type I stabilizations have to be applied to [R1| and [Rs] to get the same

exchange class provided that [Ryi|— ¢ = [R]+ «.

Corollary: the equivalence of Legendrian links is decidable.
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In order to extend the approach to transverse links we have to be able to decide whether

or not [Ri|w = |Ra|5.

This is also decidable.
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{rectangular diagrams}  {tranverse-Legendrian link diagrams}

exchange moves, Sz {Reidemeister-IT1T moves, exchange moves}
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The homology class and the number of self-intersections of the diagram are preserved,
hence, all combinatorial types of TL-diagrams representing [R]ﬁ are searchable.



The homology class and the number of self-intersections of the diagram are preserved,
hence, all combinatorial types of TL-diagrams representing [R]ﬁ are searchable.

Corollary: the equivalence of transverse links is decidable.



