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Introduction



Poisson bracket and Hamiltonian systems

Let M be a smooth manifold, dim M = N.
Let f, g ∈ C∞(M).

In local coordinates y = (y1, . . . , yN ) on M the Poisson bracket is given by:

hij(y) = {yi, yj}, {f, g} = hij(y)
∂f(y)

∂yi
∂g(y)

∂yj
, i, j = 1, . . . , N.

Poisson bracket allows to define a Hamiltonian system on M :

d

dt
yi = {yi, H(y)}, i = 1, . . . , N.



Poisson bracket and Hamiltonian systems

In canonical coordinates (y1, . . . , yN ) = (x1, . . . , xn, p1, . . . , pn), N = 2n we
have

{xi, pj} = δij , {xi, xj} = 0, {pi, pj} = 0, i, j = 1, . . . , n;

{F,H} =

n∑
j=1

(
∂F

∂xj
∂H

∂pj
− ∂F

∂pj

∂H

∂xj

)
.

Canonical Hamiltonian equations:

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
.

The first integrals F = F (y) of this system satisfy the following condition:

Ḟ = {F,H} = 0.



Integrable geodesic flow on a 2-surface

Let
ds2 = gij(x)dxidxj , i, j = 1, 2

be a Riemannian metric on M2. The geodesic flow is called integrable if the
Hamiltonian system

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, H =

1

2
gijpipj

possesses an additional first integral F : T ∗M2 → R such that

Ḟ = {F,H} =

2∑
j=1

(
∂F

∂xj
∂H

∂pj
− ∂F

∂pj

∂H

∂xj

)
= 0

and F is functionally independent with H almost everywhere.



Global integrability of
Hamiltonian systems



Topological obstacles to the complete integrability

Theorem (V.V. Kozlov)
If a genus of a surface M2 is different from 0 or 1 (that is M2 is homeomorphic
neither to a sphere S2 nor to a torus T2), then the geodesic flow of any
analytical Riemannian metric on this surface has no first integral which is
analytical on T ∗M2 and independent on the Hamiltonian.



Polynomial in momenta first integrals

It is known that there exist metrics of two types on the 2-torus with an
integrable geodesic flow, namely:

ds2 = Λ(x)(dx2 + dy2), F1 = p2,

ds2 = (Λ1(x) + Λ2(y))(dx2 + dy2), F2 =
Λ2p

2
1 − Λ1p

2
2

Λ1 + Λ2
.

Conjecture about degrees of polynomial first integrals (V.V. Kozlov).
The maximal degree of any irreducible polynomial in momenta first integral of
geodesic flow on a surface of genus g seems to be not larger than 4− 2g.



Cubic first integral
Choose the conformal coordinates (x, y), such that ds2 = Λ(x, y)(dx2 + dy2).

H =
p2

1 + p2
2

2Λ
, F = a0(x, y)p3

1 + a1(x, y)p2
1p2 + a2(x, y)p1p

2
2 + a3(x, y)p3

2.

The following relations on the metrics and coefficients of the first integral hold:

a2 − a0 = c0, a3 − a1 = c1,

where c0, c1 ∈ R are Kolokoltsov constants; moreover,

a1Λy + 2Λa0x + 3a0Λx = 0,

3a1Λy + 2Λa1y + (1 + a0)Λx = 0.

(1 + a0)Λy + Λ
(
a0y + a1x

)
+ a1Λx = 0,

It can be written in the following form: 3a0 2Λ 0
1 + a0 0 0
a1 0 Λ

Λ
a0

a1


x

+

 a1 0 0
3a1 0 2Λ

1 + a0 Λ 0

Λ
a0

a1


y

= 0.



Integrable geodesic flow on the 2-torus

Theorem (N.V. Denisova, V.V. Kozlov)
Suppose that the geodesic flow on the 2-torus admits a homogeneous in
momenta first integral Fn which is independent on the Hamiltonian. Suppose
that
1) either Fn is even on p1, p2

2) or Fn is even on p1(p2) and odd on p2(p1),
then there exists an additional polynomial in momenta first integral of degree
≤ 2.

Theorem (N.V. Denisova, V.V. Kozlov)
Suppose that the geodesic flow on the 2-torus admits a homogeneous in
momenta first integral Fn which is independent on the Hamiltonian. The metric
Λ(x, y) is assumed to be a trigonometric polynomial. Then there exists an
additional polynomial in momenta first integral of degree ≤ 2.



Integrable geodesic flow on the 2-torus

Theorem (M. Bialy, A.E. Mironov)
If the Hamiltonian system has an integral F which is a homogeneous polynomial
of degree n, then on the covering plane R2 there exist the global semi-geodesic
coordinates (t, x) such that

ds2 = g2(t, x)dt2 + dx2, H =
1

2

(
p2

1

g2
+ p2

2

)
and F can be written in the form:

Fn =

n∑
k=0

ak(t, x)

gn−k
pn−k1 pk2 .

Here the last two coefficients can be normalized by the following way:

an−1 = g, an = 1.



Integrable geodesic flow on the 2-torus

The condition {F,H} = 0 is equivalent to the quasi-linear PDEs

Ut +A(U)Ux = 0, (1)

where UT = (a0, . . . , an−1), an−1 = g,

A =


0 0 . . . 0 0 a1

an−1 0 . . . 0 0 2a2 − na0

0 an−1 . . . 0 0 3a3 − (n− 1)a1

. . . . . . . . . . . . . . . . . .
0 0 . . . an−1 0 (n− 1)an−1 − 3an−3

0 0 . . . 0 an−1 nan − 2an−2

 .



Quasi-linear system of PDEs

Quasi-linear systems of the form

A(U)Ux +B(U)Uy = 0,

Ut = A(U)Ux, U = (u1, . . . , un)T

appears in such areas like

• gas-dynamics
• non-linear elasticity
• integrable geodesic flows on 2-torus

and many others.



Hopf equation (inviscid Burgers’ equation)

Consider the following equation ut + uux = 0. The solution of the Cauchy
problem u|t=0 = g(x) is given by the implicit formula

u(x, t) = g(x− ut).

It follows from this formula that the higher any point is placed, the faster it is.

-

6u

x

-



Semi-Hamiltonian systems

Theorem (M. Bialy, A.E. Mironov)
(1) is semi-Hamiltonian system. Namely, there is a regular change of variables

U 7→ (G1(U), . . . , Gn(U))

such that for some F1(U), . . . , Fn(U) the following conservation laws hold:

(Gi(U))x + (Fi(U))y = 0, i = 1, . . . , n.

Moreover, in the hyperbolic domain, where eigenvalues λ1, . . . , λn of A(U) are
real and pairwise distinct, there exists a change of variables

U 7→ (r1(U), . . . , rn(U))

such that the system can be written in Riemannian invariants:

(ri)x + λi(r)(ri)y = 0, i = 1, . . . , n.



Semi-Hamiltonian systems

The eigenvalues of a semi-Hamiltonian system λi(r) satisfy the following
relations:

∂rj
∂riλk
λi − λk

= ∂ri
∂rjλk

λj − λk
, i 6= j 6= k 6= i.

It means that there exists a diagonal metrics

ds2 = H2
1 (r)dr2

1 + . . .+H2
N (r)dr2

N ,

with Christoffel symbols satisfying the following relations

Γkki =
∂riλk
λi − λk

, i 6= k.

S.P. Tsarev: the generalized hodograph method.



Natural mechanical systems and the Maupertuis principle

Let Mn be a smooth manifold with the Riemannian metric ds2 = gijdx
idxj .

Consider a Hamiltonian system

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, H =

1

2
gij(x)pipj + V (x), i, j = 1, . . . , n,

where V (x) is a smooth potential. Define

Q2n−1 = {H(x, p) = h, h > maxV (x)}.

Construct a new Hamiltonian

H̃ =
1

2

gij(x)pipj
h− V (x)

such that H̃ = 1 on Q2n−1. H̃ corresponds to the new metric

g̃ij = (h− V (x))gij .



Natural mechanical systems and the Maupertuis principle

So we have
Q2n−1 = {H(x, p) = h} = {H̃(x, p) = 1}.

It follows from here that trajectories of these two Hamiltonian systems coincide
(up to a parametrization).

Suppose that the initial natural mechanical system (with H as a Hamiltonian)
admits a first integral f(x, p) on a fixed energy level Q2n−1. Then the geodesic
flow (with H̃ as a Hamiltonian) admits a first integral f̃(x, p) = f(x, p|p| ) on the

whole T ∗Mn (except maybe a zero energy level) and f |Q2n−1= f̃ |Q2n−1 .



Natural mechanical systems on the 2-torus

Consider a Hamiltonian system with the Hamiltonian

H =
p2

1 + p2
2

2
+ V (x1, x2),

where V is assumed to be periodic function on the plane R2 with a period
lattice Λ ⊂ R2.
1) If

V (x1, x2) = V (αx1 + βx2),

where α, β ∈ R, then there exists a polynomial integral F1 = αp2 − βp1.
2) If

V (x1, x2) = V1(α1x1 + β1x2) + V2(α2x1 + β2x2),

where αi, βi ∈ R are constants compatible with the period lattice Λ, then there
exists a polynomial integral
F2 = (d1 + d2)p2

1 + 4p1p2 − (d1 + d2)p2
2 + 2(d1 − d2)(V1 − V2), di = αi/βi.



Polynomial integrals of natural mechanical systems

• 3 degree
M. Bialy
N.V. Denisova, V.V. Kozlov

• 4 degree
N.V. Denisova, V.V. Kozlov, D.V. Tresсhev

• 5 degree
A.E. Mironov

• Higher degrees
Open problem



Magnetic geodesic flow (systems with gyroscopic forces)

d

dt
yi = {yi, H(y)}mg, i = 1, . . . , N.

In coordinates (y1, . . . , yN ) = (x1, . . . , xn, p1, . . . , pn), N = 2n magnetic
Poisson bracket is given by

{xi, pj}mg = δij , {xi, xj}mg = 0, {pi, pj}mg = Ωij(x),

Consider a Hamiltonian system

ẋj = {xj , H}mg, ṗj = {pj , H}mg, j = 1, 2

on the 2-torus in presence of a magnetic field with H = 1
2g
ijpipj and the

Poisson bracket:

{F,H}mg =

2∑
i=1

(
∂F

∂xi
∂H

∂pi
− ∂F

∂pi

∂H

∂xi

)
+ Ω(x1, x2)

(
∂F

∂p1

∂H

∂p2
− ∂F

∂p2

∂H

∂p1

)
.



The only known examples of integrable geodesic flows
on the 2-torus on all energy levels

Integrable geodesic flow

ds2 = Λ(y)(dx2 + dy2), F1 = p1;

ds2 = (Λ1(x) + Λ2(y))(dx2 + dy2), F2 =
Λ2p

2
1 − Λ1p

2
2

Λ1 + Λ2
.

Integrable magnetic geodesic flow

ds2 = dx2 + dy2, ω = Bdx ∧ dy, B = const 6= 0, F1 = cos
(p1

B
− y
)

;

ds2 = Λ(y)(dx2 + dy2), ω = −u′(y)dx ∧ dy, F1 = p1 + u(y).



Magnetic geodesic flow and its integrability

Theorem (S.V. Bolotin, V.V. Ten)
Let H =

p21+p22
2 and the magnetic form ω = λ(x, y)dx ∧ dy. The magnetic

geodesic flow possesses an additional polynomial first integral iff the Fourier
spectrum of λ(x, y) lies on a straight line going through the origin and the
average of λ(x, y) over the whole torus is equal to 0.

Consequence (S.V. Bolotin, V.V. Ten)
The degree of any irreducible polynomial first integral of such magnetic geodesic
flow is equal to 1.



Quadratic first integrals on several energy levels

H =
p2

1 + p2
2

2Λ(x1, x2)
, ẋj = {xj , H}mg, ṗj = {pj , H}mg, j = 1, 2.

Theorem (A., Bialy, Mironov)
Consider the magnetic flow of the Riemannian metric ds2 = Λ(x, y)(dx2 + dy2)
with the non-zero magnetic form ω. Suppose the magnetic flow admits a first
integral F2 on all energy levels such that F2 is quadratic in momenta. Then in
some coordinates we have

ds2 = Λ(y)(dx2 + dy2), ω = −u′(y)dx ∧ dy

so there exists another integral F1 which is linear in momenta: F1 = p1 + u(y),
and F2 can be written as a combination of H and F1.

I.A. Taimanov: There is no additional irreducible quadratic first integral with
analytic periodic coefficients even on 2 different energy levels!



Integrals of higher degrees on several energy levels

Lemma (A., Valyuzhenich) Suppose that the geodesic flow on the 2-torus in a
non-zero magnetic field admits an additional polynomial in momenta first
integral F of an arbitrary degree N on N+1

2 or N+2
2 different energy levels

{H = E1}, {H = E2} . . . . Then F is the first integral of the same flow on all
energy levels.

Theorem (A., Valyuzhenich) Suppose that the geodesic flow on the 2-torus in a
non-zero magnetic field admits an additional polynomial in momenta first
integral F of an arbitrary degree N with analytic periodic coefficients on N+1

2

or N+2
2 different energy levels {H = E1}, {H = E2} . . . . Then the magnetic

field and the metric are functions of one variable and there exists a linear in
momenta first integral F1 on all energy levels.



Quadratic first integrals on a fixed energy levels

For a Riemannian metric ds2 = Λ(x, y)(dx2 + dy2) and quadratic in momenta
first integral on the 2-torus on a fixed energy level we obtain the following
system

A(U)Ux +B(U)Uy = 0,

where

A =


0 0 1 0
f 0 Λ 0
2 1 0 g

2

0 0 0 − f2

 , B =


0 0 0 1
−g 0 0 −Λ
0 0 − g2 0

2 −1 f
2 0

 , U =


Λ
u0

f
g

 .

Magnetic field has the form: Ω = 1
4 (gx − fy).

M. Bialy, A.E. Mironov: This system is proved to be semi-Hamiltonian.



Dorizzi B., Grammaticos B., Ramani A. and Winternitz P.:
two commuting functions H̃, F̃ with respect to the standard Poisson bracket { , } were
found by the following construction:

H̃ =
1

2

(
p1 +R

′
(y)
)2

+
1

2

(
p2 − S

′
(x)
)2

+ h,

F̃ =
1

2

(
p2 − S

′
(x)
)2

+R
′
(y)
(
p1 +R

′
(y)
)

+ S
′
(x)
(
p2 − S

′
(x)
)

+ f.

Here functions h and f are defined as follows:

h =
1

2
(S
′
)2 +

1

2
(R
′
)2 + SR

′′
+RS

′′
+ µ2 − µ1, f =

1

2
(S
′
)2 + SR

′′
+ µ2,

where
µ1 = (S

′
)2 +

1

2
β2S

2 − β3S, µ2 = −(R
′
)2 − 1

2
β1R

2 + β3R.

Here functions S(x), R(y) have to satisfy the following equations

S
′′

= αS2 + β1S + γ1, R
′′

= −αR2 + β2R+ γ2,

α, βj , γk are constants. These constants have to be chosen so that there are smooth
periodic solutions S,R of these equations.



Commuting functions H̃, F̃ determine two new functions

H =
p21 + p22

2
+ h, F =

p22
2

+R
′
p1 + S

′
p2 + f

which are commuting with respect to the magnetic Poisson bracket and the magnetic
field is

Ω(x, y) = S
′′

(x) +R
′′

(y).

By Maupertuis’ principle, one can modify H to give explicit examples of integrable
magnetic geodesic flows on one energy level.

Example
The functions

HE =
p21 + p22

2(E − h)
, F2 =

1

2
p22 +R

′
(y)p1 + S

′
(x)p2 + f

commute with respect to { }mg on the energy level {HE = 1}. Notice that for any
E > maxh, HE is a perfectly defined Hamiltonian of the magnetic geodesic flow on
the torus which has a quadratic integral F2 on the energy level.



The only known explicit non-trivial solution
Dorizzi B., Grammaticos B., Ramani A. and Winternitz P.:

A(U)Ux +B(U)Uy = 0, U = (Λ, u0, f, g)T , Ω =
1

4
(gx − fy).

A =


0 0 1 0
f 0 Λ 0
2 1 0 g

2

0 0 0 − f
2

 , B =


0 0 0 1
−g 0 0 −Λ
0 0 − g

2
0

2 −1 f
2

0

 .

Explicit solution:

U0(x, y) =


Λ(x, y)
u0(x, y)
f(x, y)
g(x, y)

 =


2E − 2h(x, y)

−8q(x, y)− 4(E − h(x, y))
−4R′(y)
4S′(x)

 , Ω = S′′(x) +R′′(y),

h(x, y) =
1

2
(S′)2 +

1

2
(R′)2 + SR′′ +RS′′ + µ1 − µ2, q(x, y) =

1

2
(S′)2 + SR′′ + µ2,

here µ1(x, y) = (S′)2 + 1
2
β2S

2 − β3S, µ2(x, y) = −(R′)2 − 1
2
β1R

2 − β3R and

S′′ = αS2 + β1S + γ1, R′′ = −αR2 + β2R+ γ2.



Quadratic first integrals on a fixed energy level

Theorem (A., Bialy, Mironov)
There exist real analytic Riemannian metrics on the 2-torus which are arbitrary
close to the Liouville metrics (and different from them) and a non-zero analytic
magnetic fields such that magnetic geodesic flows on the energy level {H = 1

2}
have polynomial in momenta first integral of degree two.



Crucial construction

Introduce the following evolution equations:

Uτ = A1(U)Ux +B1(U)Uy,

where

A1 =


g 0 0 Λ
−2g g 0 −2Λ

0 0 0 0
0 −2 0 0

 , B1 =


f 0 Λ 0
2f f 2Λ 0
0 2 0 0
0 0 0 0

 .

This system defines the symmetry of the previous system so that this flow
transforms solutions to solutions.



Crucial construction

One can easily check that

U0(x, y) =


Λ1(x) + Λ2(y)

2Λ2(y)− 2Λ1(x)
0
0


is the solution, where Λ1(x) and Λ2(y) are periodic positive functions:
Λ1(x+ 1) = Λ1(x), Λ2(y + 1) = Λ2(y). This solution corresponds to the
geodesic flow of the Liouville metric with zero magnetic field having the
quadratic first integral of the form

F2 =
Λ2(y)p2

1 − Λ1(x)p2
2

Λ1(x) + Λ2(y)
.

Λ1 and Λ2 are assumed to be real analytic periodic functions.



Local integrability of
Hamiltonian systems



Polynomial integrals of geodesic flow

Choose the conformal coordinates (x, y), such that

ds2 = Λ(x, y)(dx2 + dy2), H =
p2

1 + p2
2

2Λ
.

Theorem (V.V. Kozlov)
For any n ≥ 1, n ∈ N there exists an analytic function Λ(x, y) such that the
corresponding Hamiltonian system possesses an irreducible polynomial integral
of degree n with analytic (in a small neighborhood of a point x = y = 0)
coefficients.



Polynomial integrals of geodesic flow
Let

F = an(x, y)pn1 + an−1(x, y)pn−1
1 p2 + . . .+ a1(x, y)p1p

n−1
2 + a0(x, y)pn2

be the first integral of this geodesic flow. The following relations hold:

∂an
∂x

Λ +
n

2
an
∂Λ

∂x
+
an−1

2

∂Λ

∂y
= 0,

∂an
∂y

Λ +
∂an−1

∂x
Λ +

n− 1

2
an−1

∂Λ

∂x
+ an−2

∂Λ

∂y
= 0,

........................................................................

a1

2

∂Λ

∂x
+
∂a0

∂y
Λ +

n

2
a0
∂Λ

∂y
= 0.

Let a1 6= 0. Then this system can be solved with respect to ∂Λ
∂x ,

∂a0
∂x , . . . ,

∂an
∂x .

So we can consider a Cauchy problem on the line x = 0 and apply the
Cauchy–Kovalevskaya theorem to prove the existence and uniqueness of an
analytic solution.



Classical hodograph method (n=2)

Consider a quasi-linear system of PDEs of the form(
f
g

)
y

=

(
a11 a12

a21 a22

)(
f
g

)
x

, aij = aij(f, g)

on the unknown functions f(x, y), g(x, y). The following relations hold:

∂f

∂x
= 4∂y

∂g
,
∂f

∂y
= −4 ∂x

∂g
,
∂g

∂x
= −4 ∂y

∂f
,
∂g

∂y
= 4∂x

∂f
,

where 4 =
(
∂x
∂f

∂y
∂g −

∂x
∂g

∂y
∂f

)−1

. We obtain the following system of linear PDEs:

−∂x
∂g

= a11(f, g)
∂y

∂g
− a12(f, g)

∂y

∂f
,

∂x

∂f
= a21(f, g)

∂y

∂g
− a22(f, g)

∂y

∂f
.



Extended hodograph method (n=3)

Consider a quasi-linear system of PDEs of the formfg
h


y

=

a11 a12 a13
a21 a22 a23
a31 a32 a33

fg
h


x

, aij = aij(f, g, h)

on the unknown functions f(x, y), g(x, y), h(x, y). To apply the hodograph method,
we need an additional flow which commutes with the previous one:fg

h


t

=

b11 b12 b13
b21 b22 b23
b31 b32 b33

fg
h


x

, bij = bij(f, g, h).

Denote 4 = (tf (xhyg − xgyh)− tg(xhyf − xfyh) + th(xgyf − xfyg))−1 . We have

∂f

∂x
= 4

(
∂y

∂h

∂t

∂g
−
∂y

∂g

∂t

∂h

)
,
∂f

∂y
= −4

(
∂x

∂h

∂t

∂g
−
∂x

∂g

∂t

∂h

)
,
∂f

∂t
= 4

(
∂x

∂h

∂y

∂g
−
∂x

∂g

∂y

∂h

)
, . . .



Semi-Hamiltonian systems, the generalized hodograph method
S.P. Tsarev.
A quasi-linear system of PDEs written in the diagonal form

rit = vi(r)r
i
x, i = 1, . . . , n, vi 6= vj

is called semi-Hamiltonian if

∂rj
∂rivk
vi − vk

= ∂ri
∂rjvk

vj − vk
, i 6= j 6= k 6= i.

Here rj are Riemann invariants. Semi-Hamiltonian systems possess infinitely
many symmetries, i.e. commuting flows of the form riτ = ωi(r)r

i
x, i = 1, . . . , n,

wherein the following relations on vi, ωi hold:

∂rkvi
vk − vi

=
∂rkωi
ωk − ωi

, i 6= k.

Due to the generalized hodograph method, a local solution is given by the
following system of algebraic equations:

ωi(r) = vi(r)t+ x.



Semi-Hamiltonian systems, the generalized hodograph method

Consider a quasi-linear semi-Hamiltonian system of PDEs which is not in the
diagonal form:

uit =

n∑
j=1

vij(u)ujx, i = 1, . . . , n.

Suppose that this system possesses a symmetry, i.e. a commuting flow of the
form uiτ =

∑n
j=1 ω

i
j(u)ujx, i = 1, . . . , n, wherein the mixed derivatives coincide:

∂τ (uit) = ∂τ

 n∑
j=1

vij(u)ujx

 = ∂t(u
i
τ ) = ∂t

 n∑
j=1

ωij(u)ujx

 .

Due to the generalized hodograph method, a local solution is given by the
following system of algebraic equations:

xδik + tvik = ωik.



Polynomial integrals of the geodesic flow on a 2-surface

Theorem (G. Abdikalikova, A.E. Mironov)
On a 2-surface introduce the coordinates ds2 = g2(t, x)dt2 + dx2. The
Hamiltonian takes the form H = 1

2

(
p21
g2 + p2

2

)
. The corresponding geodesic flow

has a local polynomial in momenta first integral of the fourth degree:

F4 =
a0

g4
p4

1 +
a1

g3
p3

1p2 +
a2

g2
p2

1p
2
2 + p1p

3
2 + p4

2.

Here

a0(t, x) =
3(c2 + t+ 3c23)

5c23
, a2(t, x) = −6(2c2 + 2t+ c23)

5c23
,

a1(t, x) = −3
√
c23(−5c1 − 4(3c2 + 8t)− 18c23 + 5x)− 12(c2 + t)2

5c23
,

g(t, x) =
2
√
c23(−5c1 − 4(3c2 + 8t)− 18c23 + 5x)− 12(c2 + t)2

5c23
,

where c1, c2, c3 are arbitrary constants.



Rational integrals of geodesic flow

Choose the conformal coordinates (x, y), such that H =
p21+p22

2Λ . Let U be a
small neighborhood of a point x = y = 0. Denote Pr, Qs — homogeneous in
momenta p1, p2 polynomials of degrees r, s accordingly.

Theorem (V.V. Kozlov)
For any r ≥ 1, s ≥ 1, r, s ∈ N, r ≥ s there exists an analytic function Λ : U → R
such that
1. the corresponding Hamiltonian system possesses an irreducible rational in
momenta first integral (independent on the Hamiltonian) of the form

F =
Pr
Qs

with analytic coefficients in U ;
2. polynomials Pr, Qs are irreducible a.e. in U ;
3. the Hamiltonian system doesn’t possess any rational first integrals
(independent on the Hamiltonian) of the form F =

P ′r
Q′s
, r′ + s′ < r + s.



Rational integrals of the geodesic flow on a 2-surface

Maciejewski A.J., Przybylska M.: The following two functions commute

H =
p2

1 + p2
2

2
+ f(p1, p2)(xp1 − αyp2), F = pα1 p2, α ∈ R.

• If α ∈ R/Q, then F is not meromorphic.
• If α ∈ Q, then F is algebraic.
• If α ∈ −N, then F is rational.
• If α ∈ N, then F is polynomial.

Aoki A., Houri T., Tomoda K.: Let f(p1, p2) = p1 + p2, α = − sr with
relatively prime, positive integers r, s. Then

H =

(
x+

1

2

)
p2

1 + (x− αy) p1p2 +

(
1

2
− αy

)
p2

2, F̃ = F r =
pr2
ps1
.

So we obtain a rational first integral F̃ of the geodesic flow on a 2-surface (with
the exceptional flat case α = −1).



Rational integrals of the geodesic flow on a 2-surface

M.V. Pavlov, S.P. Tsarev
Suppose that the geodesic flow with the Hamiltonian

H =
1

2

(
p2

1 +
p2

2

(b1(x, t)− b2(x, t))2

)
possesses an additional first integral:

F =
(b1 − b2)p1 − b2p2

(b1 − b2)p1 − b1p2
.

Then the following relations hold:

b1t = (1 + b1b2)b1x − (1 + b21)b2x, b2t = (1 + b22)b1x − (1 + b1b2)b2x.

This system turns out to be semi-Hamiltonian.



Rational integrals of the geodesic flow on a 2-surface

After making the following change of variables:

u(x, t) = − 2

(b1 − b2)2
, v(x, t) =

b1 + b2
b1 − b2

we obtain the system of PDEs:

ut + 2vx = 0, vt + (log u)x = 0.

This system appears in fluid mechanics (barotropic fluid), gas dynamics
(polytropic gas), also well known as a dispersionless limit of 2DToda lattice. In
the hyperbolic domain this system can be written in the Riemann invariants:

r1x =
1

4
(r1 − r2) r1t, r2x = −1

4
(r1 − r2) r2t,

where

u = − (r1 − r2)2

8
, v =

r1 + r2

2
.



Rational integrals of the geodesic flow on a 2-surface

The hodograph method produces:

tr2 =
1

4
(r1 − r2)xr2 , tr1 = −1

4
(r1 − r2)xr1 .

By cross differentiation we obtain the Euler – Darboux – Poisson equation on
x(r1, r2):

∂2x

∂r1∂r2
=

1

2(r1 − r2)

(
∂x

∂r1
− ∂x

∂r2

)
.

Having a solution of this equation, one may find t in quadratures.



Global rational integrals of natural mechanical systems

Consider a Hamiltonian system with Hamiltonian of the following form

H =
p2

1 + p2
2

2
+ V (x, y),

where V is an analytic function on the plane R2 with the period lattice Λ = Z2.

Theorem (A.)
Suppose that this natural mechanical system possesses an additional global first
integral of the form

F =
a(x, y)p1 + b(x, y)p2 + c(x, y)

f(x, y)p1 + g(x, y)p2 + h(x, y)
.

Then the potential has the form V (x, y) = V1(αx+ βy) and, consequently,
there exists a linear in momenta first integral F1 = αp2 − βp1.



Thank you for your attention!


