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Magnetic field and twisted symplectic structure

(X, g) a compact Riemannian manifold.

w an arbitrary closed 2-form on X (a magnetic field),

Define the twisted symplectic form on the phase space B = T*X:
Q=Qy+ 7T>)k(w,

where Qg is the canonical symplectic formon T*X and x : T*X — X
is the bundle map.

In local coordinates (x',x2,...,x",py,p2,...,pn) ON T*X,

n n
Qo=> dojndx, w=)" wydx Adx¥,

j=1 jk=1

The Hamilton equations of a Hamiltonian H(x p) with respect to Q:
dx’/ oH dp,- .
= = =1,...,n
at ~ op axf Z f" ool
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Magnetic geodesic flow

The magnetic flow ¢! : T*X — T*X associated with (g,w) is the
Hamiltonian flow of the Hamiltonian

1 1T -
h(x,p) = 5lpl5-i = 5 > Pk
279 2
j k=1
The Hamilton equations of the magnetic flow ¢!:
ax K dp; L ,
E:Zgjkp/ﬁ #:ijkgklplv j:1>"'7n'
k=1 k=1
J: TX — TX a skew-adjoint operator (the Lorenz force):
w(u,v)=g(Ju,v), u,veTX.

If (x(1),£(1)) = ¢!(x, &) is a trajectory of the magnetic flow ¢, then its
projection to X satisfies the equation

V¥ = JIA,
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Magnetic Laplacian

Hermitian line bundle

X a (compact) smooth manifold;
(L, ht, V%) a Hermitian line bundle on X:

@ L — X a complex line bundle on X:
locally, over some open Q C X,
Ll =2QxC; C®(Q,L|lg) = C>(Q);

@ ht a Hermitian structure in the fibers of L:

s, s el — (s, 8 €C,
@ V! a connection (covariant derivative): for U € C®(X, TX)
Vi C®(X,L) — C™(X, L),
which is Hermitian:
Vi(s, 8 = (VES, ) + (8, V), 8,8 € CP(X,L).
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Magnetic Laplacian

Quantum line bundle

Let (L, ht, V%) be a Hermitian line bundle on X.
The curvature of V% is the differential two-form R on X:

RY(U,V) =ViVy - ViV —Viyy, U, VeTX

Compeatibility condition:

w = iR

Quantization condition:

(L, ht, vt exists < [w] € H?(X, 27Z).
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Magnetic Laplacian

The magnetic Laplacian

Let (L, ht, V%) be a Hermitian line bundle on X.
The connection can be considered as an operator

Vi=d+r:C®X,L) - C®X, T*X® L)

Fiix a Riemannian metric g on X.
We have L2-inner products on C>(X, L) and C>®(X, T*X ® L):

(s.8)i2x,0) = /(5(2)75/(2))hLdVg(Z), s,8' € C*(X, L).
X
The formally adjoint operator
(VH*: C=(X, T*X ® L) — C=(X, L).
For s € C*(X,L),s' € C®(X, T*X® L):
(VEs, 8)izox 7o xon) = (8, (VD)) 2 (x.0)-
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Magnetic Laplacian

The magnetic Laplacian

Definition
The magnetic Laplacian At is the Bochner Laplacian associated with a
Hermitian line bundle (L, At, Vt):

Al = (Vhy vt Cc>(X,L) —» C®(X, L).

Semiclassical parameter:
@ [P = L®P the p-th tensor power of L.
e AY the magnetic Laplacian acting on C=(X, LP).
@ 1= p~ ' asemiclassical parameter.
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Magnetic Laplacian

Example

@ X =R" L =X x C the trivial Hermitian line bundle.
@ The connection form I = —JA,
A =7 A(x)dx; is a real-valued one form
(the magnetic potential).
@ The curvature Rt = dI' = —idA.
@ The magnetic field w = B := dA,

B= Z Bi(x)dx; A dxk, By = ox  ox

j,k=1

@ The Riemannian metric g is the standard metric on R,
@ The magnetic Laplacian:

n

AP — Z (aax/ — iij(x))z.

=1
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The setting

- i APy
{vp,J € N} the eigenvalues of A™: A~ upj = vp jUp -

Apj = A/ Vpj + P?.

Fix E > 1 and ¢ € C°(R). Define
Yo(e) = > o(Apj — EP).
j=0

A smoothed version of Np(¢) = #{j € N: |vp; — Ep| < ¢}, ¢ > 0.

The main observation:

An asymptotic expansion of Y,(y) as p — oo is expressed in terms of
the magnetic geodesic flow (the trace formula).
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The trace formula

Magnetic geodesic flow

We will consider the Hamiltonian

1/2
H(x,p) = (1Pl +1)/2 = (de,pkH) .
J

k=1

The corresponding Hamilton equations with respect to the twisted
symplectic form Q = Qg + 73w on T* X have the form:

axl 1 ap; 1
o Hzg”‘ k= HZw,kg P, j=1,.
K,I=1
The restriction to Bg = H~1(E):

dxi 1 dp;
dt Ezg]k 71.] Z jkg p/a j_17"'7n'
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The trace formula

Clean flows

For E > 1, Be = H~'(E) c T*X is a smooth submanifold of T*X.
Assume that the Hamiltonian flow ¢ of H is clean on Bg.

If the set of periods of the flow is discrete, then ¢ is clean on Bg if:
o for every period T, the set Pr = {bc Bg : ¢’ (b) = b} is a
manifold,

@ at each b € Py its tangent space T,Pr is identical with the set of
fixed vectors of d(¢7)p.
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The trace formula

Guillemin-Uribe trace formula

@ {1,),j € N} the eigenvalues of AL,

® Apj=1/Vpj+ P

@ For E > 1and ¢ € CX(R), we put

Yo() =D @( Ao — EP).
j=0

Theorem
The sequence Yj(y) admits an asymptotic expansion

Yo() ~ Y ci(pp)p®, p— oo,

J

00
=0

where the coefficients ¢;(p, ¢) are bounded in p.
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Guillemin-Uribe trace formula

Theorem (continued)

Moreover, we can say the following about the leading coefficient in the
expansion, ¢y, and the degree d = d(y):

Yole) ~ > c(p.o)p?, p— oo,

/=0
If O is the only period in supp(p), then d = n—1 and

co(p, @) = (2m)"¢(0)Vol(BE),
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The trace formula

Theorem (continued)

Assume:
@ there is a unique period T of the flow in the support of &.
@ Let Yy,..., Y, be the connected components of

Pr = {bc Bg: ¢'(b) = b} of maximal dimension k.
Then
d—k—1,

and for each j there is a density v; on Y; defined in terms of the
classical dynamics:

,
co(p, ) = 3(T) S emio1/2g S /Y v
r=1 j

where o is the (common) Maslov index of the trajectories in Y; and S;
their (common) action.
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The trace formula

The action of periodic trajectory

v is a periodic trajectory on B C T*X;
mx o~y the projection of v to X;
In the case when w = dA for some real-valued 1-form A, the action S,

of v:
S, =+LVE? -1 +/7rj(A.
vy
In the case of an arbitrary w the action of ~ is defined modulo multiples

of 27
S, = £LVE2 — 1+ ha().
ha(v) € 8" = R/2x7Z the holonomy of 7y o v with respect to V*
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Non-degenerate trajectories

Assume:

there is a unique periodic trajectory v C Bg whose period T, is in the
support of @, Y; = ~;

Then
Pr =, d =0 and the density v on v can be computed explicitly:
T’# e7rl'0',y /2 _ibS
= — Y D T
Co(p7 SD) 27T‘I—P’y’1/2e SO( ’Y)

where:
@ T the primitive period of ~;
@ P, the Poincare map of ;
@ o, the Maslov index of ~.
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Constant magnetic field on the two-torus
@ X =T2?=NR?/7?, g = dx? + dy?.

@ L the line bundle over T2, whose sections are identified with
functions u € C*>°(R?) such that

u(x +1,y) = e¥u(x,y), u(x,y+1)=u(xy).
e e should be periodic, that gives the quantization condition

B=2rn, neZ.

o Put
B = 2r.
@ The Hermitian connection on L has the form
vi=d-IA,

where A is the magnetic potential: A = 27xdy.
@ The magnetic form w = dA = 2wdx A dy.
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Constant magnetic field on the two-torus

The spectrum

The operator

02 ) 2
LP .

The eigenvalue problem
AYu(x,y) = Au(x, y),
u(x +1,y) = e®ulx,y),ulx,y + 1) = u(x, y).
We can make a Fourier transform in y, writing
X,y) =Y ux(x)e*™.
keZ
Then we have for uy

d? K\ 2
— 14 =
d2+ 7rp<x—|—p>
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Constant magnetic field on the two-torus

The spectrum
The eigenvalues
vpj=2mp(2j+1), j=0,1,2,....

The corresponding eigenfunction

Uy j(x) = axhx (27rp (x + g)) .

So we can take arbitrary ap, a1, ..., a@p—1 and we get the eigenfunction
of H:

p—1
u(x,y) =>_ak > _ h(2m(px + k + pj)) e <P,
k=0 jez

Therefore, the multiplicity of the eigenvalue v
Mpj = P
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Constant magnetic field on the two-torus

The trace formula

For ¢ € C°(R), we have

Yo(p) = ipso (\/p2 +2rp(2j+1) - Ep) :

j=0
Let us write
._E2—1 _ E2 -1 “n nez
I= =37 P 4r P ’ '
Then we get
Yo(e)
> E2 1
= > pely/ B2 +2rp(2n+1) - 4mp pr—Ep|.
47
n=—[E=1p]
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Constant magnetic field on the two-torus

Recall the Taylor expansion for f(x) = v1+x —1 atx =0:
1 1, — K
fxX)=v1i4+x—-1= 52X~ gX +kz_30kx ,

where
(2k — 3)!
22k=2k|(k — 2)1”

For each n, we have the following asymptotic expansion as p — +oc:
1 E? -1
)\pv,-—Ep_E<7r(2n+1)—27r{ yp p})

1 E2 -1 \°

= Ck E2 -1
+ZE2Tpk_1 27'('(2”"‘1)-47’[' e P

k=3

ok = (—1)k1 k>2.

k
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Constant magnetic field on the two-torus

Using Taylor expansion of ¢:

olay+aip '+ ap2+..)
’
= ¢(ap) + ¢'(ao)ar + (¢'(a0)az + 5@”(30)5'%)[3_2 o

we obtain an asymptotic expansion for Yy(y):

1

Yo(@) ~ co(p,p)p + ci(p, @) + Co(p, )P + ..., p— o0,

For the leading term of order p, we get

Co(P,w)ZEw(W—zg{Ez:P}).

neZ
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Constant magnetic field on the two-torus

By Poisson summation formula

E:KnP+ty:§:;A<%T>e%¢? (1)

nez keZ

with

>

(m:/nmfww,

2r EZ‘1p} and, therefore,
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Constant magnetic field on the two-torus

For the next term, we have

r(@n+1) 2n (B2 1)
ZzEB‘p E ~E\ 4z P

nez
<7r(2n+1) 27{52—1 })2
X | —_— prl .
E E 47

By Poisson summation formula (with f = o(x)x?)

2i 2k 2rik 2rk K
2 __ ~ ~ 2migt
E ¢ (NP+t)(nP+t)* = — E (P¢’< 5 >+ 52 <p”< 5 >> e“"'pl.

nez KEeZ

So we get

i ik B
er(p.) =~ 3 (5rga# (KB + 4o (kE))

keZ

1p'
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Geometric interpretation

The magnetic form w on T2 given by
w=BdxAdy, BeR.
The Hamiltonian H has the form
1/2
HOxy,pxopy) = (PR +pE+1)

and the reduced Hamiltonian system on Bg is given by

(= p. 1 py. P 1 Bpy, p 1 Bp
X = — X V= = x — — = —— X -
gPo Y= EPy EPr Pr="F
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Constant magnetic field on the two-torus

This system can be easily solved:

1 B 1 B
_ 0 0 _ 0
x(t) =x"+ 5Py <‘I cos Et> + gPxsin Et’

1 B, 1 B
94 _0cin 2 0 _ —
y(t)=y"+ B,Oysm Et Bpx <1 cos Et)’
B B
_ 0 0
Px(t) =py sin Et+px cos Et’
B B
_n0 0 :
py(t) =py cos Et—pxsm Et.

So each trajectory is periodic with period T = 2%E. Its projection 7 is
the image of a circle of radius §/(p2)? + (P9)2 under the natural
projection f : R? — T2.
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Constant magnetic field on the two-torus

Its length is equal to

L= 27‘(*\/ _27T 1.

Next, we compute
/ / Bxay.
=1(v)

By Stokes formula, we compute (with D, the disc bounded by v and S,
the area of this disc):

Vs
[ A=~ [ Baxndy = -BS =~ F(F)R + (B))°) =~ f(E® - 1).
107 D
When B = 27, we get

37:/A+L\/E2_ :%(52_1)
i
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Constant magnetic field on the two-torus

We have
Be = H'(E) = {(x,y,px,py) : Pz + p; = EZ =1} C T*X.
In the polar coordinates py = Rcos ¢, py, = Rsin g, we have

docdp, = RdRdyp, dH = #,

therefore, Liouville measure on Bk is given by

_ dxdydpx dpy

Vol oH

= Edyp

and
Vol(Bg) = 2nEVol(X) = 2nE.

d =1, ¢; is clean on Bg (because it is periodic).
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Constant magnetic field on the two-torus

E N o ik E2=1
colp. ) = 5 > BKE)eHme P,
keZ

If O is the only period in supp(), then d = n—1 and

co(p, ) = (2m)~"¢(0)Vol(B).

Fork=0 £
Co(p, ¢) = 5_4(0) = (2m) 2 (0)Vol(Bk).
Vol(Bg) = 27E.
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Constant magnetic field on the two-torus

(p’ ng kE Ik7r IkE p
kGZ

Assume that there is a unique period T of the flow in the support of ¢:

,
co(p, ) = 3(T) S emio1/2g S / i

r=1 Y/

where o is the (common) Maslov index of the trajectories in Y; and S;
their (common) action.

k the multiplicity of the trajectory.
Each trajectory is periodic with period T = E.
S, = f7A+ LVE2 —1 = %(E2 —1).

o = 2 is the Maslov index.
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The two-sphere

The two-sphere
Suppose that the manifold X is the round two-sphere
X2 +y? 4+ 2% = R?.
In the spherical coordinates
x = Rsinfcosp,y = Rsinfsinp,z= Rcosh, 6¢c (0,7),¢ € (0,2r),
the Riemannian metric g on X is given by
g = R?(d6? + sin® Ady?),
and the magnetic form w by

1 1 .
w=3 avoly = 5 Sin 0do N dy.

Yuri A. Kordyukov (Ufa, Russia) Trace formulas for the magnetic Laplacian Tomsk, December 14, 2018 31/45



The two-sphere

For any ¢ € C°(R) and E > 1, one has an asymptotic expansion
Yo(e) ~ > ci(p.)p' ™, p— .
j=0

The coefficients ¢; can be computed explicitly.
For the first two of them, we get

colprp) = 3" 2ER2p | —ZEEK | grikpin) g BTHAYEL T ep
KkeZ A/ E2 -1+ 41?
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The two-sphere

(D A 2mERk
ci(p,p) =) |2iR%% 1
TER(ARZ — 1)k ., onERK

i

miERK N 27 ERK

/
2(E2 -1+ 1)3/290 E2_14 1

4R2

— X
2 \/m 4 \/m ]
4R? 4R?
o em'k(p+1)e—27rikl?1 /E2—1+41ﬁp.
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The two-sphere

In particular, when R = 1/2, we get

E il —
Co(p.9) = 3 5 ¢ (k) e™HPH e THED
keZ

1. 7rlk o L
ci(pp) = Z Ehp (7k) — =23 (rk) | @7 kpt1) g=mikEp,
keZ
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The hyperbolic plane

Consider the hyperbolic plane H = {(x, y) € R? : y > 0} equipped with
a Riemannian metric

’
g= F[dxz + dy?].

Assume that the line bundle L is trivial and the connection V£ on L is
given by the connection 1-form

A= de.
y

So we have
ax A dy

w = Bdvoly = B vz
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The hyperbolic plane

Let ' C PSL(2,R) be a cocompact lattice acting on H without fixed
points.
The quotient X =T \ H is a compact Riemannian surface.
The prequantization condition holds if
(2g—-2)BeZ,

where g is the genus of X.
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The hyperbolic plane

The sections of the associated line bundle L on X can be identified
with functions ¢ on H such that
cz+d\ 28
< ) (2)

|cz + d|

W(yz) = ¢¥(2) exp(—i2Barg(cz + d))

forany z€ Hand v = (i 2) erl.

Let K = T(*1 0)X be the canonical bundle of holomorphic one-forms on

X. Then ¢ can be associated with a section g(z)dz—2 € K=&, where
9(2) == yBy(2).

The function g satisfies

9(vz) = (cz+d)2Bg(z), ~eT.

and is called a I'-automorphic form of weight —2B.
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The hyperbolic plane

Put B=1. Forany ¢ € C3*(R) and 1 < E < /2, one has an
asymptotic expansion

Yo(e) ~ > cilp.o)p' ™, p— oo,

The coefficients ¢; can be computed explicitly.
For the first two of them, we get

2nkE , ,
co(p, ¢) = (29 — 2) EZ (\/L> gk g2miky/2—E2p.

keZ
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The hyperbolic plane

C1 (pa QO) =

keZ
1. 2nkE 2wkE
+3 (29— 2)si 5
2 (20-2)g \/2—EZ‘P<¢2—EZ>

eik7r e27rl'k 2—E2p'

2wkE 27kE
29— 2)i o
+ (29 )i geyer? (\/ﬁ)

kezZ
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The magnetic Katok example

The magnetic Katok example

Suppose that the manifold X is the round two-sphere
X4 y? 422 =1.
In the spherical coordinates
X =sinfcosp, y=sinfsing, z=-cosf, 6¢c(0,7),¢¢€(0,27),
the Riemannian metric g on X is given by
dg? sin® 6
1 —€2sin?f * (1 — 2sin? 9)

and the magnetic form w by

g= 5 de?,

esin 20

=dA=——"—"_ _dfndp,
“ (1 — €2sin? )2 4
where 5
esin© 0
A= —— —
1 — €2sin%0 4
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The magnetic Katok example

The trace formula near zero

If 0 is the only period in supp(p), then, for E > 1, one has an
asymptotic expansion

Yo(e) ~ Y ci(p.o)p' ™, p— oo,
j=0

where

co(p, ) = 2E4(0). ()
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The magnetic Katok example

The trace formula away zero

If 0 is not in the support of ¢, then, for E = V2, one has an asymptotic
expansion

Yo(e) ~ > cilp.o)p, p— oo,
j=0

where
elkm g PR e PR (2ry/2k
co(p, ) = + = .
o(p:2) kzyéo V2(1 — €2) ( sin’%k6 sin % L
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The magnetic Katok example

The magnetic geodesic flow

The Hamiltonian H has the form

1/2
1— 2 '202
H— <(1 —ezsinze)p§+(6_§'”)p§+1> ,

sin© 6

and the reduced Hamiltonian system on Bg is given by

0 1E(1 — €2sin2 0)py,

.1 (1 —€2sin?0)?

4 “E sin® 6 Pe:
Py = 6E2 |n6cos<9p9+1E ;(r);ea—e“sinﬁcosﬁ pi—i—z—EecotGp@,
. € sin20
Pe=" E1—_esin?g" "
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The magnetic Katok example

The magnetic geodesic flow
This system is integrable with an additional first integral given by

sin 6

P=p,+e—F——.
Pe 6‘I — €2sin? 9
It is easy to check that this system has two periodic solutions

T E2 -1
9([’) = E’ @(t) = iT(‘I - 62)t+ $0,

E2 —1
Po(t) =0, py(t) = :t172'

The period and the length of the corresponding periodic trajectory ¢+

— €

2rE i o

T = , = —.
(1—e)VEZ -1 1€
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The magnetic geodesic flow

It turns out that, if E = v/2 and ¢ is irrational, these are the only
periodic orbits of the magnetic geodesic flow. Indeed, first of all,
observe that the restriction of the Hamiltonian system to the energy
level Be is described by the Lagrangian

(1 — €2sin 092+S|n 02 €sin 6
L(0,¢,0, ) \/7\/

(1 — €25sin2 9)2 1 _2sin2g”

The desired statement is proved in Rademacher04, where it is shown
that this is exactly the Finsler metric introduced be A. Katok. These
metrics coincide with the examples of constant flag curvature Finsler
metric on S? given by Z. Shen.
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